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abstract

A Maple Program for Computing Landau-Ginzburg A- and B-Models and an Exploration
of Mirror Symmetry

Evan D. Merrell
Department of Mathematics, BYU

Master of Science

Mirror symmetry has been a significant area of research for geometry and physics for
over two decades. Berglund and Hubsch proposed that for a certain family of singularities
W, the so called “transposed” singularity W T should be the mirror partner of W. [1] The
techniques for constructing the orbifold LG models to test this conjecture were developed
by FJR in [2] with a cohomological field theory generalized from the study of r-spin curves.
The duality of LG A- and B-models became more elaborate when Krawitz [3] generalized
the Intriligator-Vafa orbifold B-model to include contributions from more than one sector.

This thesis presents a program written in Maple for explicitly computing bases for both
LG A- and B-model rings, as well as the correlators for A-models to the extent of current
knowledge. Included is a list of observations and conjectures drawn from computations done
in the program

Keywords: Mirror symmetry, Landau-Ginzburg theory, Orbifolds, Programming, Code
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Chapter 1. Background

Let W ∈ C[x1, x2, . . . , xN ]. We say W is quasihomogeneous if there are positive integers

d1, d2, . . . , dN , n such that

W (td1X1, t
d2X2, . . . , t

dNXN) = tnW (X1, X2, . . . , XN).

In physics, [d1, d2, . . . , dN ;n] is called the weight system for W , and the ratios qi = di/n are

called the charges. In mathematical context, these qi are called weights. We call W non-

degenerate if these weights are uniquely determined, the Hessian determinant is non-zero,

and there is an isolated singularity at the origin. Associated with such a nondegenerate W

is its Milnor ring QW = C[x1, x2, . . . , xN ]/∂W , a graded ring with top degree ĉ =
∑

(1−2qi)

and dimension µ =
∏

( 1
qi
− 1), and its basis is generated by monomials

∏
iX

bi
i . The Milnor

ring is graded by quasidegree, where the quasidegree of
∏

iX
bi
i is

∑
i qibi. The ring has a

pairing defined by

fg =
〈f, g〉
µ

Hess(W ) + terms of lower order,

and with this pairing the ring is a Frobenius algebra.

In order to make orbifold Landau-Ginzburg models, we use diagonal symmetries of W.

The maximal group of diagonal symmetries of W is defined by

Gmax = {(α1, α2, . . . , αN) ∈ CN |W (α1x1, α2x2, . . . , αNxN) = W (x1, x2, . . . , xN)}.

A symmetry group is called admissible if it is the maximal symmetry group for W + Z,

where Z is some term or terms such that W +Z is again a nondegenerate quasihomogeneous

polynomial with the same variables and weights as W . Every admissible subgroup contains

the exponential grading element J = diag(exp 2πiq1, exp 2πiq2, . . . , exp 2πiqN). In some cases

〈J〉 = Gmax, but in general one may choose from the entire subgroup lattice from 〈J〉 to

Gmax

1
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We now define the state space HW,G for our Landau-Ginzburg A-model and the structure

to make it a Frobenius algebra. In [2] this is done in terms of Lefschetz thimbles, but

through a (non-cannonical) isomorphism, we may work instead with Milnor rings. Choose

some admissible symmetry group G ⊂ Gmax and for each γ ∈ G, we let Fix γ ⊂ CN be the

fixed locus of γ and Nγ be the dimension of this fixed locus. We now define the sector Hγ

by

Hγ := ΩNγ
(
CNγ

)
/
(
dW |Fixh ∧ ΩNγ−1

) ∼= QW |Fixγ
· ωγ

where ωγ ∈ ΩNγ is dXi1 ∧ dXi2 ∧ . . . ∧ dXiNγ
, the natural choice of a volume form. We now

define the state space HW,G as the G-invariant subspace of the sum of the sectors Hγ:

HW,G :=

(⊕
γ∈G

Hγ

)G

.

We define W-degree which will make HW,G a graded ring as follows: given γ ∈ G, it can

be written in the form

γ =
(
e2πiθγ1 , e2πiθγ2 , . . . , e2πiθγN

)
,

where we use Θγ
i to denote the principal choice of phase θγi such that 0 ≤ Θi

γ < 1. Thus we

may express γ uniquely as

γ =
(
e2πiΘγ1 , e2πiΘγ2 , . . . , e2πiΘγN

)
.

The W-degree degW (αγ) for αγ ∈ Hγ is defined as

degW (αγ) := Nγ + 2
N∑
i=1

(Θγ
i − qi),

2
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and this gives us a graded ring. We also define a pairing

ηγ : (Hγ)
G ⊗ (Hγ−1)G → C, ηγ(a, b) = 〈a, I−1(b)〉,

where I : Hγ → Hγ−1 is the cannonical isomorphism that follows from the fact that Fixγ =

Fixγ−1 and thus Hγ,Hγ−1 are two copies of the same space. The pairing on the full state

space is the direct sum on the pairings of the individual sectors, and we denote the full

pairing matrix in a fixed basis as ηα,β = 〈α, β〉 with inverse ηα,β.

Next we require one reference to FJRW theory in its fullness: for each pair of non-negative

integers g, k with 2g − 2 + k > 0 the FJRW cohomological field theory produces classes

ΛW
g,k(α1, α2, . . . , αk) ∈ H∗(Mg,k) of complex codimension D for any k-tuple (α1, α2, . . . , αk) ∈

Hk
W,G. Here Mg,k is the Deligne-Mumford stack of stable curves of genus g and k marked

points, and the codimension D is given by

D = ĉW (g − 1) +
1

2

k∑
i=1

degW (αi).

We define k-point correlators by

〈α1, α2, . . . , αk〉 :=

∫
Mg,k

ΛW
g,k(α1, α2, . . . , αk)

and the αi’s are referred to as insertions of the correlator.

We give axioms for computing FJRW rings, in a somewhat simplified form focusing on

three-point genus-zero correlators, since that is all that’s needed for the ring structure. We

define the product

r ? s :=
∑
α,β

〈r, s, α〉ηα,ββ

for r, s ∈ HW,G as α, β range over some fixed basis.

Axiom 1 Dimension: If 2D 6∈ Z, then ΛW
g,k(α1, α2, . . . , αk) = 0. Otherwise, 2D is the real

3
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codimension of the class ΛW
g,k(α1, α2, . . . , αk). In particular, for 3-point genus-0 correlators,

〈α1, α2, α3〉 6= 0 =⇒ D = 0 ⇐⇒
3∑
i=1

degW αi = 2ĉ.

Axiom 2 Symmetry: For σ ∈ Sn,

ΛW
g,k(α1, α2, . . . , αk) = ΛW

g,k(ασ(1), ασ(2), . . . , ασ(k)).

The next axioms deal with the line bundles L1,L2, . . . ,LN of the W-structure of an

orbicurve, but like most everything for the purposes of this program, the hard math reduces

to some very simple conditions. For a class ΛW
g,k(α1, α2, . . . , αk) with αi ∈ (Hγi)

G , let li = |Li|,

the degree of the line bundle, for each variable Xi. We then have by [2]

li = (2g − 2 + k)qi −
∑
j

θ
γj
i .

Axiom 3 Integer Degrees:

ΛW
g,k(α1, α2, . . . , αk) 6= 0 =⇒ li ∈ Z,

for i ∈ {1, 2, . . . , N}.

Axiom 4 Concavity: If li < 0 for i = 1, 2, . . . , N then 〈α1, α2, α3〉 = 1.

For the next axiom, we use the Witten map W :

W :
N⊕

1=1

H0(C,Li),→:
N⊕

1=1

H1(C,Li),

W : W 7→
(
∂W

∂X1

,
∂W

∂X2

, . . . ,
∂W

∂XN

)
.

The dimensions of these cohomologies H0(C,Li) and H1(C,Li) are h0
i and h1

i respectively,

4
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and they are given by

h0
i =


0 if li < 0;

li + 1 if li ≥ 0;

h1
i =


−li − 1 if li < 0;

0 if li ≥ 0;

and so both are nonnegative integers and we have h0
i − h1

i = li + 1, which is Riemann-Roch

for Li.

Axiom 5 Index Zero: Consider the classΛW
g,k(α1, α2, . . . , αk) with αi ∈ (Hγi)

G . If Fixγi =

{0} for each αi ∈ {1, . . . , k} and

D =
k∑
i=1

(h0
i − h1

i ) = 0,

then ΛW
g,k(α1, α2, . . . , αk) is equal to the degree of the Witten map. Strictly speaking, the

integral over this class is equal to the degree of the Witten map, but we abuse notation and

identify the codimension zero class with the value of its integral over Mg,k.

Axiom 6 Composition: If the four point class ΛW
0,4(α1, α2, α3, α4) is codimension zero,

then it decomposes in terms of three-point correlators in the following way:

ΛW
0,4(α1, α2, α3, α4) =

∑
β,δ

〈α1, α2, β〉ηβ,δ〈δ, α3, α4〉

where β, δ range over a fixed basis for HW,G.

Note that Fix J = {0}, so HJ
∼= C, and let 1 be the element corresponding to 1 ∈ C.

This is the identity in HW,G.

Axiom 7 Pairing: For any α, β ∈ HW,G we have

〈α, β,1〉 = ηα,β.

5
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Not necessary as an axiom, an elementary consequence will be that an insertion of 1 in a

genus-zero k-point correlator with k > 3 forces the correlator to be zero.

Axiom 8 Sums of Singularities: If W1 ∈ C[X1, . . . , Xs],W2 ∈ C[Y1, . . . , Ys] are non-

degenerate quasihomogeous polynomials with maximal symmetry groups G1, G2 respectively,

then W = W1 + W2 is a non-degeneate quasihomogeneous polynomial with maximal sym-

metry group G = G1 ×G2 and there is a Frobenius algebra isomorphism

HW,G
∼= HW1,G1 ⊗HW2,G2 .

The FJRW theory is a candidate for being a Landau-Ginzburg A-model. Milnor rings

are already known to be Landau-Ginzburg B-models, but orbifold B-models are a recent

development due to Intriligator and Vafa, with the specifici implementation in our case due

to Krawitz, following a recipe of Kaufmann. The state space BW,G has a definition parallel

to the A-model,

BW,G :=

(⊕
γ∈G

QW |Fixγ
· ωγ

)G

,

but it is only an algebra after defining a suitable multiplication of orbifold sectors. For

g ∈ G, let Fg := i : gXi = Xi. The structure constants γg,h such that 1g ? 1h = γg,h1gh are

then defined (up to scaling) by

γg,h
HessW |Fixg∩Fixh

µW |Fixg∩Fixh

:=


HessW |Fixgh

µW |Fixgh

ifFg ∪ Fh ∪ Fgh = 1, . . . , N ;

0 otherwise.

For these orbifold B-models, our choice of group must come from the lattice ranging from the

trivial group (giving a copy of the Milnor ring) to SLC(N)∩Gmax
W . The SLC(N) restriction is

dual to all admissible symmetry groups containing the group 〈J〉, and the lattice of choices for

orbifolding the B-model from the trival group to SLC(N)∩Gmax
W is observed to be isomorphic

the lattice from Gmax to 〈J〉 in all cases, though this has yet be rigorously proven.

6
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A singularity is called invertible if the number of monomials matches the number of

variables. We may identify a polynomial W with a matrix Bi,j where bi,j is the exponent of

the jth variable in the ith monomial of W . The invertibility of W is equivalent to the matrix

Bi,j being square, and by considering the matrix BT
i,j, we get the transpose singularity W T .

If we assume that the charges of W are less than 1
2

then it has been proven [3] that W T is the

mirror partner of W in the sense that the A- and B-models of W are isomorphic to the B-

and A-models respectively of W T using the maximal symmetry group for the A-model and

the trivial group for the B-model. It is also known that for charges less than 1
2

that W must

be a sum of polynomials of the following forms: a Fermat polynomial Xa1
1 +Xa2

2 + . . .+XaN
N ,

a chain Xa1
1 X2 +Xa2

2 X3 + . . .+X
aN−1

N−1 XN +XaN
N , or a loop Xa1

1 X2 +Xa2
2 X3 + . . .+XaN

N X1.

Removing the restriction on charges allows rather stranger things to happen, which will be

addressed in the sections on observations and conjectures.

Chapter 2. Observations and Conjectures

We consider the two classes of invertible non-degenerate singularities, chains and loops (a

Fermat can be considered a chain with N = 1), and compute some of the important values

for the general polynomial of the class. First we consider a chain, with

WChain = Xa1
1 X2 +Xa2

2 X3 + . . .+X
aN−1

N−1 XN +XaN
N ,

which will have

dimHWChain,Gmax =
N∑
i=0

(−1)i
N−i∏
j=1

aj, µ =
N∑
i=0

(−1)i
N∏
j=i

aj,

and a basis for the Milnor ring can be produced by removing all mutiples of certain monomials

from a simple starting set:

7
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{∏
i

Xα
i

∣∣∣0 ≤ α < ai

}
\ Exclusions

Exclusions := multiples of


{Xa1−1

1 X2, X
a1−1
1 Xa3−1

3 X4, . . . , X
a1−1
1 Xa3−1

3 . . . XaN−1
N } N odd,

{Xa1−1
1 X2, X

a1−1
1 Xa3−1

3 X4, . . . , X
a1−1
1 Xa3−1

3 . . . X
aN−1−1
N−1 XN} N even,

where this denotes removing from {
∏

iX
α
i |0 ≤ α < ai} all those monomials divisible by any

elements of the exclusion set. The order of Gmax is

∣∣Gmax
WChain

∣∣ =
∏
i

ai

.

For convenience, we define the symbol âS by

âS =
∏

i∈{1,...,N}\S

ai

with the convention that the empty product is 1. The utility of introducing this notation

is that by expressing phases (and in particular, charges) in terms of the exponents ai, they

are now in the same terms as the basis for the Milnor ring, which helps in finding which

monomials, if any, will be invariants in a sector.

The charges for WChain are given by

qi =
1

|Gmax|

N−i∑
j=0

(−1)j â{i,...,N}.

Considering now a loop type singularity

WLoop = Xa1
1 X2 +Xa2

2 X3 + . . .+XaN
N X1,

8
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we have ∣∣∣Gmax
WLoop

∣∣∣ = (−1)N+1 +
∏
i

ai,

and we can compute

dimHWLoop,Gmax =
∏
i

ai, µ =
∏
i

ai,

with Milnor basis {∏
i

Xα
i

∣∣∣0 ≤ α < ai

}
.

The charges for this W are given by

qi =
1

|Gmax|

N−1∑
j=0

(−1)j âi,...,N,1,...,i+j.

For both loops and chains, an especially nice generator for the maximal symmetry group

is the element γ1 with phases

θi =
1

|Gmax|
(−1)i+1â{i,...,N}

so that we may express the state space sectors as ek corresponding to γk1 , which are eaily

identified since the first phase of ek is k
|Gmax| .

A Ramond sector is one for which Nγ 6= 0 and there exists at least one invariant mono-

mial in the restricted Milnor ring QFixγ. For loops and chains, using Gmax, there are Ra-

mond sectors exactly when an even number of variables are fixed. Loops with an odd

number of variables have no Ramond sectors, and thus the correlators are especially nice

to compute. For loops with an even number of variables, the monomials for the e0 sector

are Xa1−1
1 Xa3−1

3 . . . X
aN−1−1
N−1 , Xa2−1

2 Xa4−1
4 . . . XaN−1

N . Chain singularities will have only one-

dimensional Ramond sectors when using Gmax, and then only if an even number of variables

are fixed; the invariant monomial in such a case is Xak−1
k X

ak+2−1
k+2 . . . X

aN−1−1
N−1 if variables k

through N are those that are fixed.

Consider the lattice of all admissible symmetries of a non-degenerate W , which forms a

9
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subgroup lattice of groups G where 〈J〉 ≤ G ≤ Gmax, which we will call the A-lattice of W .

Similarly, the B-lattice of W T is the lattice of groups 〈e〉 ≤ GWT ≤ Gmax
WT ∩ SLC(N) which

can be used in creating orbifold B-models.

Conjecture 1. Lattice Conjecture. Let W be given. The lattice of all possible subgroups

from 〈J〉 to Gmax
W is exactly the lattice of admissible symmetries GW of W . Further, this

lattice is isomorphic to the full lattice 〈e〉 ≤ G′ ≤ Gmax
WT ∩SLC(N) and the order of the group

G′ corresponding to each GW has order |G′| = |Gmax
W : GW |

For G in the A-lattice, let GT denote this corresponding element G′ of the B-lattice. As

a caution about notation, GT
W ≤ Gmax

WT , but it is not true that GT
W is an admissible symmetry

of W T .

If one uses G in the construction of an A-model, the correct choice of group for the

orbifold B-model has proved to be GT . Though there is no motivation known for using one

group for orbifolding while using another group for taking invariants, the A- and B-model

constructions allow it, and the correspondence of A- and B-lattices extends to this more

general situation, and computations with the program lead to the follow conjecture:

Conjecture 2. Let W be an invertible non-degenerate singularity. For any admissible

symmetries G1, G2 of W ,

HG2
W,G1

∼= BG
T
1

WT ,GT2

as Frobenius algebras.

A proof of conjecture requires only the case of G1 = Gmax, G2 = 〈J〉, since all other

choices for the Gi will give Frobenius subalgebras of H〈J〉W,Gmax .

In [4] there are explicit computations showing thatH〈J〉W1,0
andH〈J〉J3,0 can’t be isomorphic to

the Milnor ring of any quasihomogeneous singularities and so the more general construction

is necessary. These are the first examples of singularities where finding the partner is a bit

trickier than just specifying a polynomial. Consider the case of W1,0: x4 + bx2y3 + y6 for

nonsingular choice of b. The FJRW ring of x4 + y6 using the maximal symmetry group is

10
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just a tensor product of two rings, but we need not use the maximal symmetry group and

the lattice conjecture doesn’t require W to be irreducible: we can use the symmetry group of

x4+bx2y3+y6, and its dual partner will be found by transposing x4+y6 and identifying where

on the A-lattice we have the group for x4 + bx2y3 + y6. Then we identify the corresponding

element of the B-lattice, namely 〈exp(2πi1
2
, 2πi1

2
)〉, since |Gmax

x4+y6 : Gmax
x4+bx2y3+y6| = 2, and we

do indeed get an orbifold B-model isomorphic to the A-model for H〈J〉W1,0
.

Given a weight system and the condition that W be quasihomogeneous of quasidegree

1, there may be many choices of polynomial representatives W for a particular singularity.

There may be both invertible and non-invertible representatives, both loops and chains, both

reducible and irreducible representatives. All of these can be found in the weight system

(1
3
, 1

3
, 1

3
). For any W which has the same weight system as an invertible singularity, we can

take the transpose of that invertible singularity, and take an appropriate orbifold B-model

to get something isomorphic to the A-model of the W we started with.

Suppose W is a non-invertible singularity. It’s known that for any admissible group

one can add terms such that the admissible group is the maximal symmetry group of the

expanded polynomial, in a way we want to reverse the process. IfW = Winv+Z1+Z2+. . .+Zk

with Winv invertible, then we consider the A-lattice of Winv. Each Zi is associated with an

element Gj of the A-lattice, where Gj = Gmax
Winv+Zj

. Then
⋂
j Gj = Gmax

W ≤ Gmax
Winv

is in the

A-lattice of Winv and we know the element
(⋂

j Gj

)T
in the B-lattice.

Observation 1. For non-degenerate non-invertible W = Winv + Z1 + Z2 + . . . + Zk with

Winv invertible,

HW,GmaxW

∼= B
WT
inv ,(

⋂
j Gj)

T .

The A-model depends on the choice of symmetry group, which in turn depends on the

choice of W representing a given singularity. If it proves necessary to change representation,

there may not be as direct a way of specifying the appropriate group in the B-lattice, though

the order will be |Gmax
Winv

: Gmax
W |.

The simplest singularity which does not admit any invertible singularity with the same

11
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weight system is x16 + y5x + z3x + y2z2 with weights ( 1
16
, 3

16
, 5

16
). If we follow Kreuzer and

Skarke’s polytope duality [5] which generalizes the Berglund and Hubsch [1] transposition

construction, the dual weight system has weights 7
240
, 1

5
, 1

3
, and the only monomials with

quasidegree 1 are x16yz, y5, z3, which do not give an isolated singularity. Thus, it appears

that there are singularities for which there do not exist any non-degenerate W which will

give the appropriate orbifold LG models, and FJRW theory in its current form may have hit

its limit in this area.

For invertible singularities, ĉ is the same for both W,W T . There certainly seems to be

geometric significance to this, but at present it is only an interesting observation. If we

presume W,W T have the same number of variables, this reduces to saying that the sum of

the weights for W is the sum of the weights for W T . For any weight system, there we may

consider the simplex described by

∑
i

qiXi = 1, Xi ≥ 0

and the lattice points it includes. These lattice points are exactly the monomials of quaside-

gree 1 in the given weight system, and they have a direct connection with linear relations

among the weights by way of toric diagrams [6].The Newton polytope for W is contained

insided this simplex, and can presumably be adapted to give the reflexive polytopes for

Batyrev’s polar duality [7]. Note that the choice of representative W affects the polytope, as

the weight system [1,1,1;3] has 5 invertible representatives W with distinct Newton polytopes

up to permutation of variables.

Sadly, I have no guidance as to the meaning of the sum of the weights when mapped

from the toric diagram to the simplex.
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2.1 Mirror Symmetry

Mirror symmetry in our context of Abelian Landau-Ginzburg orbifolds consist of looking for

pairs W1, G1, and W2, G2 such that

HW1,G1
∼= BW2,G2 , BW1,G1

∼= HW2,G2 .

The original motivation comes from Witten in [8], where he considers twisted models, re-

placing the stress-energy tensor Tαβ by

Tαβ → Tαβ +
1

4
(εγα∂γ(JRβ ± JLβ) + α↔ β)

where the plus sign gives the B-model, and the minus sign the A-model. Given the symmetry

between the signs, there should be a symmetry between A- and B-models, if one can find

the right choices of singularities. Batyrev developed an approach using polytopes in dual

lattices which produced mirror symmetries not then known to physicists [7], which approach

Kreuzer and Skarke found to give better results than only using quasihomogeneous functions,

as all reflexive polytopes have a dual, while the hoped for mirror symmetry often failed with

the functions [9, 5]. Kreuzer and Skarke did not have the theory to directly compute A-

models, but having FJRW theory has simply confirmed that there are quasihomogeneous

non-degenerate W which do not have a suitable dual W T of the same form.

It seems that there should be a generalization or extension of FJRW theory which can

extend to reflexive polytopes without requiring a non-degenerate W . Just which hypotheses

and requirements should be kept of those necessary for being able to use FJRW theory could

be a fruitful area of study.
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2.2 What Might Come Next

There are singularites which have isomorphic LG models to chains or loops, but which are

not of that form. The singularity xy + zy + zx + xw3 has A- and B-models isomorphic to

w3x+x2, where effectively we have a quasihomogeneous singularity isomorphism identifying

the variables x,y, and z which have the same charge, 1
2
. While charges of 1/2 are grudgingly

dealt with as special cases when chains have aN = 2, the restriction qi < 1/2 seems to

come from FJRW theory being a cohomological theory where the relevan moduli spaces are

not compact for qi ≥ 1/2 and so the integrals over the relevant cycles may not exist. The

very simplest singularity W = x2 has charge 1/2, and we shall see admitting situations of

qi = 1/2 will lead to charges of more than 1/2. Alternately, since we’re working mod 1,

charges greater than 1/2 could be considered negative, and there might be an orientation

aspect to have signed weights of absolute values at most 1/2. Mirror symmetry still seems

to hold if we go outside of situations where the charges have been restricted and apply the

then unfounded algorithms.

It was first noticed in [2] that ordinary singularity isomorphisms do not generally preserve

the A-model’s structure. It is known that x2 + xw3 is dual with x2w+w3, but computation

shows xy + zy + zx+ xw3 is indeed mirror to its transpose, namely w3 + xzw + xy + yz. It

may be of value to study the connection between these last two singularities to see what will

preserve structure, and thereby learn more about that structure. In this last singularity, y

has a charge of 2
3

and the computer is going outside of proven methods since the weight is

greater than 1
2
. We can map xy+ zy+ zx+ xw3 to x2 + xw3 simply by identifying the three

variables x, y, z which all have weight 1
2

and rescaling to eliminate constants.

We can’t pull quite the same trick with w3 + xzw + xy + yz since now w, x, z all have

weight 1
3

and we want both w and one of x, z, but we still need to do something unmotivated

and ad hoc to deal with y. If we end with w3 + x2w + y2 we have singularity isomorphic to

x2w + w3, so there is reason to suspect charges greater than a half can do strange things,

if they are valid at all. Still, if one presses forward with eyes closed, things seem to work
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rather well. If we consider loops or chains where some of the ai are one, we see more evidence

that charges greater than a half always occur along with their complementary charge (qi and

1−qi) and that the variables associated with oversized charges have a feeling of gluing things

together. If we have a loop or chain with terms

. . .+X
ai−1

i−1 Xi +Xai
i Xi+1 +Xi+1Xi+2 +Xi+2Xi+3 +X

ai+3

i+3 Xi+4 + . . .

it turns out to be isomorphic to that same loop of chain with the ai = 1 section removed

and the ends “spliced” together:

. . .+X
ai−1

i−1 Xi +X
aiai+3

i Xi+4 + . . .

and this works for splicing over any even number of variables. If we have ai = 1 for an odd

number of consecutive variables, splicing does not give you an isomorphic singularity. This

suggests that somehow the technique might be useful for constructing new behaviours, if it

can be better understood. The singularity

x2y + ys+ s3t+ t4 + yu+ u2v + v2

is isolated, non-degenerate, and quasihomogeneous, and rather than being a loop or chain,

it’s basically like a Y, in the sense that if we consider two variables connected when they

appear together in the same monomial, this singularity’s graph has a vertex of degree 3,

namely y. Loops and chains have graphs that are basically discreet 1-manifolds. The charge

qy = 3
4

means we are away from solid ground, but it should be possible to further extend a

singularity of this form, or possibly create singularities with multiple branchings. Note that

qt = 1/4 6= qv = 1/2 and thus the branches are not copies of each other.
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Chapter 3. Tutorial

This program has two principal commands: LGModels, for producing bases for the LG A-

and B-models of a given isolated quasihomogeneous singularity, and ComputedCorrsOut,

which will return those correlators of the given genus and number of points which are com-

putable given methods available at the time of writing.

The procedure LGModels requires for input a polynomial and a list of variables for that

polynomial, for example,

LGModels(x^3+y^3x,[x,y])}.

Letters not appearing in the input list will be treated as constants, such as b in

LGModels(x^16+x*y^5+x*z^3+b*y^2*z^2, [x,y,z]).

All output data will have tuples ordered to match the ordering given in the input. To avoid

any possible confusion, it may be valuable to explicitly include an ordering in the variable

names, such as

LGModels(x1^3+x2^3*x1+x3^4*x2,[x1,x2,x3])}.

The polynomial representative chosen for a singularity is relevant only insofar as it af-

fects the symmetry group, as LGModels uses the maximal symmetry group for the given

polynomial. Instructions for using other symmetry groups will appear further on. For

the weights (1/3,1/3,1/3), one may choose almost any set of at least three terms from

x3 +y3 +z3 +x2y+x2z+y2x+y2z+z2x+z2y+xyz, but the Fermat polynomial x3 +y3 +z3

decomposes as the direct sum of three singularities, and LGModels will report this. One

could alternately select terms to have Fermat plus chain x3 + y3 + z2y, Fermat plus loop

x3 + y2z + z2y, chain x3 + y2x + z2y, or loop x2y + y2z + z2x. Thus, despite the fact that

quasihomogeneous singularties are effectively classified by the weight system, and the weight

system does determine the Milnor ring up to isomorphism [10], not all isolated quasihomo-

geneous representatives have the same symmetry group, and therefore the FJRW rings will

differ.
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The output [q,HG,QG]is a list of three lists, the first of which is a list of the charges of

the singularity, the second is a basis for the LG A-model, and the third is a basis for the LG

B-model. The basis elements themselves are given as a three element lists: the “degree” of

the ring element (W-degree for A-model, quasidegree for B-model), the group element of the

sector, given as a tuple of phases, and finally the polynomial. For Neveu-Schwarz sectors,

the polynomial is given as 0.

The ComputedCorrsOut procedure is used for computing the multiplication of the FJRW

ring, insofar as it possible at present. The program as included can compute most genus-zero

three-point correlators and concave genus-zero four-point correlators. The inputs needed are

the singularity, the list of variables, number of points, genus, charges, and basis for the A-

model. The output is in the form of a list of sets: a set of equations giving the values of those

correlators which can be explicitly computed, a set of equations from using the composition

axiom, and the set of those possibly non-zero correlators which cannot be computed by the

methods in the program.

A particularly effective approach is to use LGModels in an assignment of the form

RingData:= LGModels(Singularity, Variables):

so that the output is stored for use in ComputedCorrsOut as

RingCorrelators:= ComputedCorrsOut(Singularity, Variables,3,0,RingData):

among other possibilities, and this avoids having overly large ring bases being printed to the

screen.

The default approach of LGModels is to use the maximal diagonal symmetry group of

W for the A-model and the trivial group for the B-model, which yield the Milnor ring for

W . One may use other groups for orbifolding or invariance, and the full syntax of LGModels

is LGModels(W , Variables List, A-side Orbifolding group, A-side Invariance group, B-side

Orbifolding Group, B-side Invariance group). The group data is entered in the form of a list

of generating elements as tuples of phases, a polynomial for which the group elements must

be a symmetry, and a list of variables for the polynomial.
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For example, if we want to find HD5,〈J〉, one could input

LGModels(x^5+y^2x,[x,y],[[[1/5,2/5]],x^5+y^2x,[x,y]]).

Note that the generator [1/5, 2/5] must itself be put into a list, hence [[1/5, 2/5]]. The

procedure assumes that the invariance group is to be the same as the orbifolding group. To

leave some groups at the default setting while feeding parameters later in the list, enter [[]]

in place of the input groups which are to be left to default. Additionally, LGModels will

reject polynomials which are the direct sums of two or more singularities unless there is some

input into at least one of the group parameters. Since the default setting is using Gmax and

the FJRW ring of a direct sum is the tensor product of the FJRW rings of the summands

when using the respective maximal symmetry groups, the presumption is that it is more

important to understand the summands than have the tensor product.

Chapter 4. Procedures in the Code

Below are guides to all the procedures defined in the code. The first line gives the procedure

name, the syntax without optional arguments, and the output. Below that is the explicit

Maple syntax for the procedure input, and finally, a description of what the procedure does

and how it works.

Procedure Name ProcedureName(Input for Procedure); Output of Procedure

Inputs and their Maple type requirements, if applicable

Explaination of Procedure

The procedures cHat, sPlus, sMinus, kaufmannS, kaufmannSbar, Rshift, iota, SectorMu

are all take γ, q = (q1, q2, . . . , qN) as input and return the relevant number for the appropriate

sector, i.e. cHat returns ĉγ, ngamma returns Nγ, the dimension of the fixed locus of γ, and

SectorMu returns the dimension of the Milnor ring of Fix γ.

IsolatedTest IsolatedTest(W, [x1, . . . , xN ]); Boolean
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W::polynom, Vars::list

Finds the zero locus of the Jacobean ideal (∂W ) and tests to see if it contains the origin

as an isolated point. Since Maple returns solutions to systems of polynomials in the most

general form possible, the solution x1 = 0, . . . , xN = 0 will appear exactly if the origin is

isolated.

DegRead DegRead(xa11 x
a2
2 . . . xaNN , [x1, . . . , xN ]); [a1, a2, . . . , aN ]

Wj, Vars::list

Converts a monomial into a tuple of the degrees of the respective variables.

GetMatrix GetMatrix(W, [x1, . . . , xN ]); matrix B, where Bi,j is the power of

xj in the ith monomial

W::polynom, Vars::list

Builds a matrix whose rows correspond to the monomials of W , where the entries are the

degrees of the monomial in the respective variables.

GroupInvariantsA GroupInvariantsA(|γ,QWγ ], {g1, . . . , gs}, [x1, . . . , xN ]);

[γ,Q〈g1,...,gN 〉Wγ
]

SectorMilnorData::list,Generators::set,Vars::list

Finds monomials invariant under the group action. Interestingly, we can use this procedure

for both A- and B-models, since the contribution of the N-form in the A-model group action

is exactly the same as the contribution from the determinant twist for the B-model group

action.

Reducibility Reducibility(W, [x1, . . . , xN ]);

[true] or [false,[direct summands comprising W ]]

W::polynom,Vars::list

Determines if the singularity W = Gmax is a direct sum of other singularities, and if so,

returns the direct sum decomposition of the singularity. When using non-maximal symmetry

groups, in particular 〈J〉, this decomposition does not apply. The approach is to build a
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graph with the variables x1, . . . , xN as the vertex set, with edges connecting variables that

occur together in some monomial. We then look for what the connected components of the

graph are.

AddGeneration AddGeneration(List of tuples so far, q, ĉ, Postion in N-tuple);

List of tuples increased by including powers of new variable

InList::list, Charge::list, cHat, tupleposition

Used exclusively inside of TrialElts for recursively building a list of all monomials with

quasidegree at most ĉ, mod the Jacobean Ideal. The AddGeneration expands the input list

to extend to one variable more than previously, by multiplying everything in the input list

by all powers of the new variable which yield a product of quasidegree at most ĉ. Here, we’re

actually working with tuples of exponents, rather than using any variables. The InList has

entries of the form [[tuple of exponents],quasidegree].

TrialElts TrialElts(q, ĉ,basis of ∂W ,[x1, . . . , xN ]); QW in integer tuple form,

with quasidegree appended to each element.

Charge::list, cHat, JacobIdealBasis, Vars::list

Produces a list of all monomials in the variables x1, . . . , xN of quasidegree at most ĉ modulo

∂W . The list of monomials is built up one variable at a time, where each application of

AddGeneration adds the next variable in the list, and after each generation, we reduce the list

mod ∂W . The final output is a list with entries of the form [[tuple of exponents],quasidegree].

NotDivisibleBy NotDivisibleBy(tuple of exponents,second tuple of exponents,N);

Boolean

TrialElt::list, Criterion::list, dim::integer

Identifying the tuples of exponents with monomials, this procedure returns whether or not

it is true the second monomial does NOT divide the first.

Exponentiate Exponentiate(tuple of exponents [a1, . . . , aN ], [x1, . . . , xN ]);
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xa11 x
a2
2 . . . xaNN

tuple; Vars::list

Converts a list into a monomial in the given variables. Used for converting back to algebraic

format after times when it is more convenient to forget the variables and simply deal with

monomials as integer tuples.

MilnorBasis MilnorBasis(Wγ, [xi1 , . . . , xiN ] such that Fixγ = Span{xik},QW ); QWγ ,

W::polynom, Vars::list, RawBasis

Finds a basis for the Milnor ring of Wγ = W |Fix(γ) which is a subset of the full basis given.

There is a subtlety here, as simply computing the restricted basis from scratch introduces

the risk of having different representations for the same equivalence class mod ∂W .

TempWBasis TempWBasis(γ,W,QW ,q, [x1, . . . , xN ]); [γ,QW ,q|Fix(γ)

g::list, W::polynom, basislist::listlist, q::list, Vars::list

Finds the variables fixed by γ and the restrictions Wγ,q|Fix(γ) and uses MilnorBasis to return

a Milnor basis for the fixed locus, along with the charges for the variables in the fixed locus.

TransposeW TransposeW (W, [x1, . . . , xN ]); W T

W::polynom; Vars::list

Gives the transpose singularity for invertible W .

SortOutZeros SortOutZeros(any list); [[Positions of nonzero entries],[Positions

of zero entries]]

L::list

Locates all the zeros in a list e.g. finds which variables are fixed by a group element.

IndexZeroSort IndexZeroSort(List of line bundle degrees) [Locations of zeros,

locations of −2’s, Boolean for if there’s exactly one of each]

L::list
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The readily computable index-zero classes are those with line bundle degrees all −1, except

for a single 0 and a single −2. This procedure checks for these, and identifies the relevant

variables when they exist.

IndexZeroValuesOut IndexZeroValuesOut(W [x1, . . . , xW ],genus g,q,List of corre-

lators 〈ei1 , . . . , ein〉); [List of entries 〈ei1 , . . . , ein〉 = computed value, Correlators from

input list which aren’t computable by index zero approach]

W::polynom, Vars : :list, genus ::integer, Charges::list,

Correlators::listlist

Tests the input list of correlators to find those which are index zero and for which the degree

of the Witten map can be computed at this time. The output consists of a list of equations

expressing the values of those correlators in the input list which are computable, and the

second list is all those left over. These leftovers might not be index zero, or in rare cases, they

may have Witten maps where computing the degree isn’t within the scope of the program

at this time.

RamPairingOut RamPairingOut(W, [x1, . . . , xN ],q,List of correlators 〈ei, ej, ek〉);

[List of entries 〈ei, ej, ek〉 = computed value, Correlators from input list which do not reduce

to the pairing]

W::polynom, Vars::list, Charges::list, Correlators::listlist

Computes the values of all 3-point correlators determined by the pairing. (Note that only

3-point correlators are directly determined by the pairing, so any higher correlators will be

returned in the unknown list, since this approach won’t be successful.)

ComputedFourPtCorrsOut ComputedFourPtCorrsOut(W, [x1, . . . , xN ];genus g,

q, List of correlators 〈ei1 , . . . , ein); [List of entries 〈ei1 , . . . , ein〉 = computed value, Cor-

relators from input list which aren’t computable by concavity approach]

W::polynom; Vars::list, genus::integer, Charges::list,

Correlators::listlist
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Computes concave four-point correlators.

CompositionAxiom CompositionAxiom(W, [x1, . . . , xN ],genus g, q,List of correla-

tors 〈ei1 , . . . , ein〉); [List of equations in correlators values, Correlators from input list

for which the composition axiom doesn’t give new information]

W::polynom; Vars::list; genus::integer; Charges::list;

Correlators::listlist

Finds equations in 3-point correlators with one Ramond insertion by using the composition

axiom to relate these to computable index zero 4-point classes. After identifying such a

3-point correlator in the input list, the program next identifies all sectors that have a non-

zero pairing with the Ramond insertion sector, and the 3-point correlators with one Ramond

insertion which will pair with the original Ramond insertion (called Complements in the

code). We then take the NS sectors from the original correlator along with the complements,

and look for any index zero four point classes. We then have all the pieces to return exactly

the composition axiom’s equation

〈γ1, γ2, γ3, γ4〉 =
∑
α,β

〈γ1, γ2, α〉ηα,β〈β, γ3, γ4〉 (4.1)

ComputedCorrsOut ComputedCorrsOut(W, [x1, . . . , xN ], number of points k,

genus g, q, HW ); [List of correlators we can compute with their values, (List of equations

for correlators not completely determined, if any,) List of correlators about which we can’t

compute anything.]

W::polynom, Vars::list, NumPoints::integer, genus::integer,

Charges::list, CurlyH::listlist

Finds all possibly non-zero correlators of the given g; k for the given ring. Applies the

pairing, index zero, and composition axioms to compute as much information as possible

about these correlators; at present we can compute most 3-point correlators, but not much

beyond that.
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ChooseWithRepeats ChooseWithRepeats(Size of set, Length of tuple); List

of all multisets with Length elements from 1 to Size, expressed as lists

n::integer, k::integer

Used to overproduce all the possible correlators; generally the input n will be h = |HW |, and

k is the number of points for the correlator.

LBdegrees LBdegrees(genus g, q,ExplicitCorrelator); List of line bundle de-

grees of the correlator

genus::integer, Charges::list, Correlator::list

Computes the line bundle degrees of the given correlator; the order of the degrees matches

the variable order of the charges as input.

TestDegs TestDegs(List); Boolean

K::list

Returns true exactly if the list is composed entirely of integers

MakeCorrelators MakeCorrelators(HW , number of points k); List of all k-

point correlators from the basis HW

CurlyH::listlist, NumPoints::integer

Produces all k-point correlators from the given basis. The vast majority of these will be

zero, and so this procedure should almost always be used to feed into something that will

filter the results down.

AllIntList AllIntList(number of points k, genus g, q, HW ); List of correlators

with integer line bundle degrees

NumPoints::integer, genus::integer, Charges::list, CurlyH::listlist

Gives you the list of all the correlators formed from the given basis which have all integer line

bundle degrees. These are the only possible non-zero correlators, and so we get to basically

ignore all the others.

AllNeg AllNeg(List); Boolean
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K::list

Returns true exactly if all the items in the list are less than zero.

IndexZeroTest IndexZeroTest(List of line bundle degrees of a correlator, genus g);

Boolean

LBDsOfCorrelator::list, genus::integer

Returns true exactly when the line bundle degrees meet the condition for the correlator being

index zero. This is necessary, but not sufficient, as the correlator might contain a Raymond

sector.

Dim Dim(genus g, q, ExplicitCorrelator); Algebraic cohomological dimension

of ExplicitCorrelator

genus::integer, Charges::list, L::listlist

Computes the algebraic cohomological dimension of the input correlator.

NeveuSchwartz NeveuSchwartz(ExplicitCorrelator); Boolean

Correlator::listlist

Returns true exactly when the input correlator has only NS insertions.

HasUnit HasUnit(ExplicitCorrelator, 1); Boolean

Correlator::listlist, Unit::list

Returns true exactly if the correlator has the specified sector as an insertion. This doesn’t

have to be used with the unit as the specified sector, but that’s what’s been most useful,

and the context in which it’s used inside other procedures.

SortedCorrelators SortedCorrelators(Number of points k, genus g, q, HW );

Prints to screen only, no output

NumPoints::integer, genus::integer, Charges::list, CurlyH::lislist

Separates the set of possibly non-zero correlators into lists based how and if they can be

computed, and then prints these lists to screen. Largely obsolete with the development of
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ComputedCorrsOut, but seeing this information might have some use with looking patterns

in types of correlators.

HomZeroDimList HomZeroDimList(genus g, q, List of correlators); Subset

of input list which have homological dimension zero

genus::integer, Charges::list, K::listlist

Filters a list of correlators, and returns only those which have homological dimension zero,

or equivalently, cohomological dimension 3g − 3 + k.

CohoZeroDimList CohoZeroDimList(genus g, q, List of correlators); Subset

of input list which have cohomological dimension zero

genus::integer, Charges::list, K::listlist

Filters a list of correlators, and returns only those which have cohomological dimension zero,

or equivalently, homological dimension 3g − 3 + k.

CohoGoodResDimList CohoGoodResDimList(genus g, q, List of correlators);

Subset of input list which have cohomological dimension one less than expected, i.e. ho-

mological dimension 3g − 3 + k − 1

genus::integer, Charges::list, K::listlist

Filters a list of correlators, returning those that restrict well to the boundary, with homo-

logical dimension 3g − 3 + k − 1. This is used for composition axiom computations.

ZeroRestrictList ZeroRestrictList(Number of points k, genus g, q, HW );

Prints to screen only, no output

Numpoints::integer, genus::integer, Charges::list, CurlyH::listlist

Computes which correlators have integer line bundle degrees and cohomological degree zero,

and for each you get a line printed with the correlator, if it’s concave, if it’s index zero, and

the line bundle degrees.

GoodRestrictList GoodRestrictList(Number of points k, genus g, q, HW );

Prints to screen only, no output
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Numpoints::integer, genus::integer, Charges::list, CurlyH::listlist

Computes which correlators have integer line bundle degrees and cohomological degree 3g−

3 + k− 1, and for each you get a line printed with the correlator, if it’s concave, if it’s index

zero, and the line bundle degrees.

GetCoordinates GetCoordinates([γ1, γ2, . . . , γm], γ); [a1, a2, . . . , an] where γ =∏
γaii

BasisVectors::list, GroupElt::list

Tries to find how to express the given group element γ as a product of the generators γi.

Returns FAIL if such a representation is not possible. The procedure currently does not

check if the generator set might be excessive, and thus the representation might not be

unique.

CompactOutputFormatting CompactOutputFormatting([γ1, γ2, . . . , γm], Sector

in program output form [degree, γ, polynomial]); polynomial ea1,a2,...,an where γ =
∏
γaii ,

unless the polynomial is 0 or 1

BasisVectors::list, Sector::list

This procedure converts the Maple syntax for imple ring elements into the e format, with

respect to the input basis for the group G. If the monomial for the sector is 0 (the sector is

NS) then there will be no polynomial, and in a very annoying piece of having to work around

Maple trying to be helpful, when the monomial is 1, as happens in singularities with integral

ĉ, I put the symbol @, since Maple with treat 1 as the understood coefficient. I regret the

necessity, but it’s a rare enough case that the other options were much worse for normal use.

BigOutputConversion BigOutputConversion(Expression, [γ1, γ2, . . . , γm],HW );

Expression using e notation

TargetObject, BasisVectors::list, CurlyH::listlist

Converts general A-model ring elements to the e notation.

27



www.manaraa.com

BMultiply BMultiply(c1(
∏
xaii )q1, c2(

∏
xbii )q2,W, [x1, . . . , xN ]); (c1(

∏
xaii )q1?

c2(
∏
xbii )q2

FirstTerm::list, SecondTerm::list, W::polynom, Vars::list

Performs B-model multiplication for simple B-model elements where q1,q2 ∈ QW .

MultiplicationTable MultiplicationTable(W, [x1, . . . , xN ],QW ); [qi ? qj]

W::polynom, Vars::list, BBasis::listlist

Orders QW by degree and returns a matrix which is the ring multiplication table. Primarily

useful for when the B-model is not the Milnor ring.

BPairingMatrix BPairingMatrix(W, [x1, . . . , xN ],QW ); [〈qi,qj〉]

W::polynom, Vars::list, BBasis::listlist

Orders QW by degree and returns a matrix giving the values for the pairing. This is a small

step past the multiplication table.

BCorrs BCorrs(W, [x1, . . . , xN ],QW ); {〈qi,qj,qk〉 = value}

W::polynom, Vars::list, BBasis::listlist

Computes the values of all 3-point B-correlators, and returns the data as a set of equations.

This is used internally to be matched up with the known A-model correlators to try to find

isomorphisms explicitly.

ConvertExpressions ConvertExpressions(ExplicitCorrelator, HW ,QW );

Equation in B-side correlators involving coefficients BtoAi,j

Correlator::listlist, ABasis::listlist, BBasis::listlist

For the given A-model correlator, returns an equation in B-model correlators involving linear

coefficients for the B- to A-model isomorphism. Since we can explicitly find the 3-point B-

correlators, this puts you just a step or two away from explicitly finding the isomorphism(s).

After verifying that the gradings are compatible, we assume there is a vector space isomor-

phism between subspaces of a given degree, with BtoAi,j as the coefficients of the map.
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FindSubsTargets FindSubsTargets(Equation, HW ,QW ); Equation with all

A-model correlators replaced with B-model correlators

Correlator::listlist, ABasis::listlist, BBasis::listlist

Switches out all occurences of AValue() in an equation (of limited depth of operations) and

returns the same equation, now with B-side correlators. Used for restating Composition

Axiom equations in the isomorphism finder.

IsomorphismFinder IsomorphismFinder(Output from ComputedCorrsOut for 3-

pt genus-0 correlators for W, HW ,QW ,W, [x1, . . . , xN ]); Equations for explicit isomor-

phisms from the given B-model basis to the given A-model Basis

ComputedCorrsOutput::list, ABasis::listlist, BBasis::listlist,

W::polynom, Vars::list

After generating data to compute the 3-point genus zero correlators on the A side using

ComputedCorrsOut, Isomorphism Finder uses Maple’s polynomial solving to look for explicit

isomorphisms as a B- to A-model map. Be advised, this can be quite slow and memory

intensive, but you get out explicit algebra isomorphisms, to the extent that data is available.

There may be degrees of freedom remaining, though this can at least in part reflect underlying

symmetries, and not a failure in finding isomorphisms.

MinimalGenSet MinimalGenSet(G); [γ1, . . . , γm] where these γi are a minimal

generating set for the input group

Group::listlist

Produces a minimal generating set for the input group. If the input is not a group, the

procedure will produce a minimal generating set for the group generated by the input. For

each i from 1 to N (the number of variables), we take a group element with θi at the minimal

positive value. These elements are then sorted by decreasing order as group elements, and

we give as the minimal generating set the first k of these elements, where k is the smallest

value such that they generate the full group. If all N are insufficient to generate the input

G, then we take G as a generating set, and return the minimal generating set for the group
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G generates. This is assuredly not the most efficient way to reduce a linearly dependent

generating set, though that is a possible use.

MakeGroup MakeGroup([γ1, . . . , γm], polynomial, [x1, . . . , xN ]);

[G, [γ1, . . . , γm]] where these γi are a minimal generating set for the input group

Generators::list, W::polynom, Vars::list

Gives the intersection of the group generated by the input and the symmetry of the input

polylnomial. Inputting the zero polynomial will return the trivial group, while a non-zero

constant polynomial will impose no restriction on the group generated by the input. The

minimal generating set is found by the MinimalGenSet procedure.

Preliminary Preliminary(W, [x1, . . . , xN ]); Output is a list, with three cases.

W::polynom, Vars::list

This procedure determines if the input polynomial has an irreducible isolated quasihomoge-

neous singularity at the origin. If the input fails to be isolated or quasihomogeneous, the

output is the one element list [false]. If the singularity is a direct sum of singularities, the

output is [true, List of summand singularities]; if the input is irreducible, the output is [true,

[q, GW , a generating set for GW ]].

LGModels LGModels(W, [x1, . . . , xN ], (optional inputs)G1, G2, G3, G4);

[q, HG2
G1
,QG4

G3
]

W ::polynom, Vars : list, ASectorsGroup ::list:= [[ ],1,Vars],

BSectorsGroup ::list:= [[ ],1,Vars], AInvarianceGroup ::list:= [[ ],1,Vars],

BInvarianceGroup ::list:= [[ ],1,Vars]

Produces bases for A- and B-side rings for the given singularity. The A-side defaults to

the maximal abelian symmetry group of W , while the B-side defaults to the trivial group.

The optional slots are independent of each other. Also note that entering any information

for the optional slots will override the default approach of stopping short when presented

with a reducible singularity. It is very useful to use this procedure in an assignment with
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output suppressed from the screen, to have the information to feed to correlator computation

procedures, and to avoid the (noticable) time needed to print the bases of very large rings

to the screen.

SymGroup SymGroup(W, [x1, . . . , xN ]); [q, GW , a generating set for GW ]

W::polynom, Vars::list

Returns the charges of the polynomial, its maximal abelian symmetry group, and a gener-

ating set for said group.

Chapter 5. Maple Code

restart, with(ListTools) : with(LinearAlgebra) : with(Groebner) :

with(Graph Theory) : with(combinat) :

IsolatedTest := proc (W::polynom, Vars::list)

local JacobeanIdeal,LocusSolutions, LocusComponents;

description "Finds the zero locus of the Jacobean ideal,

and tests if it contains the origin and is zero dimensional. ";

JacobeanIdeal := convert( map(proc (a) options operator, arrow,

diff(W, a) end proc,Vars), set);

LocusSolutions:= MakeUnique(solve(JacobeanIdeal, Vars));

if not eval(W, [seq(k = 0, ‘in‘ (k, Vars))]) = 0 then

print("Hypersurface in specified variables does not include origin");

return false

end if;

if not member([seq(k = 0, ‘in‘ (k, Vars))],LocusSolutions) then

return false

else return true

end if
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end proc:

DegRead := proc (Wj, Vars::list)

local TuplelnProgress, N, i;

description "This rips the coefficents off a monomial

to give an integer list.";

N:= nops(Vars);

TuplelnProgress:= NULL;

for i to N do

TuplelnProgress:= Flatten([TuplelnProgress, degree(Wj, op(i, Vars))])

end do;

return TuplelnProgress

end proc:

GetMatrix :=proc(W, Vars)

# builds the matrix B, where rows correspond to monomials,

# so B_i,j is the power of variable X_j in the ith monomial

if type(W, ‘+‘) then

return Matrix([seq(DegRead(op(W), Vars) , i = 1..nops( W))]);

else return Matrix([DegRead(W, Vars)]);

end if;

end proc:

GroupInvariantsA := proc (SectorMilnorData::list, Generators::set, Vars::list)

local FixLocusBasis, i, k, FixedPlaces, RamondList, ActionImage;

description "Takes in the Milnor ring for sector and returns those

invariant under the group action.

When applied to a B model, this gives

the determinant-twisted group action.";
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if nops(SectorMilnorData)= 2 then

# This happens exactly when the fixed locus is trivial;

# the 2 elements are the group element and 0.

return SectorMilnorData

end if;

RamondList:= SectorMilnorData[2];

# this is the basis for the sector’s Milnor ring

FixedPlaces:= SortOutZeros(SectorMilnorData[1]) [2];

for i to nops(Generators) do

RamondList := select(proc (item) options operator, arrow,

type (ListTools[ DotProduct] (DegRead(item,Vars),

convert(Generators[i],list)) + add(Generators[i] [j], j

= FixedPlaces), integer) end proc,RamondList)

# This is just the definition of the group action

end do;

return seq([SectorMilnorData[1], RamondList[k]], k = 1 .. nops(RamondList))

end proc:

Reducibility := proc (W::polynom, Vars::list)

local Connectors, i, j, Edges, n, GraphPieces, TensorPieces, Vertices;

description "Determines if polynomial can be written as a direct sum,

and if so returns the summands. Does not check if the pieces are

singularities.";

n:= nops(Vars);

Edges:= { };

Vertices:= [ ];

# We’re going to make a graph with a vertex for each variable,
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# and edges connecting pairs of variables

# which occur together in a term of W

for i to n do

if diff(W, Vars[i]) != 0 then

Vertices:= [op(Vertices), Vars[i]]

end if

end do;

Connectors := select(proc (item) options operator, arrow,

type (item,‘*‘) endproc, W);

for i to n-1 do

for j from i + 1 to n do

if diff(Connectors, Vars[i], Vars[j]) != 0 then

# This identifies if there are any terms containing both variables i,j

Edges:= ‘union‘(Edges,{{Vars[i], Vars[j]}})

end if

end do

end do;

GraphPieces := ConnectedComponents(Graph(Vertices, Edges));

# The components of the graph correspond to the summands of W.

if 1 < nops( GraphPieces) then

TensorPieces := seq([W-(eval(W, [seq(k = 0,‘in‘ (k, GraphPieces[l]))])),

GraphPieces[l]], l = 1 .. nops(GraphPieces));

return [false, TensorPieces]

else return [true]

end if

end proc:

AddGeneration := proc (InList::list, Charge::list, cHat, tupleposition)

34



www.manaraa.com

local NewGeneration, dim, inSize, listposition, chargeMult, chargeBit;

description "Adds all possible powers of a new variable to

the input list of monomials (in integer list form).

Is used exclusively inside of the TrialElts procedure for generating

a monomial basis for a Milnor ring with maximum grading cHat";

NewGeneration := [ ];

inSize := nops( InList);

dim := nops(Charge);

for listposition to inSize do

for chargeMult from 0

while chargeMult*Charge[tupleposition]

+ InList[listposition][2] < cHat do

chargeBit:= subsop(tupleposition = chargeMult, [seq(0, k=1 .. dim)]);

NewGeneration:= [op(NewGeneration),

[InList[listposition][1] + chargeBit,

chargeMult*Charge[tupleposition] + InList[listposition][2]]]

end do

end do;

return NewGeneration

end proc:

TrialElts := proc (Charge::list, cHat, JacobIdealBasis, Vars::list)

local ListlnProg, NewGeneration, PrevGeneration, tupleposition, dim, starter;

description "Builds a list of all monomials with degree at most cHat,

reduced mod the given basis. The list is guaranteed not to contain

equivalent elements, but if your value for cHat

is too low, you will be missing elements, and won’t have a basis";

dim := nops(Charge);

starter:= [[[seq(0, k = 1 .. dim)], 0]];
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NewGeneration := starter;

ListInProg:= NewGeneration;

for tupleposition to dim do

NewGeneration:=

AddGeneration(NewGeneration, Charge, cHat, tupleposition);

NewGeneration := map(proc (item) options operator, arrow,

[NormalForm(Exponentiate(item[1], Vars), JacobIdealBasis,plex(op(Vars))),

item[2]] endproc, NewGeneration);

NewGeneration:= remove(proc (item) options operator, arrow,

evalb(item[1] = 0 or type(item [1], ’+’)) end proc, NewGeneration);

NewGeneration:= map(proc (item) options operator, arrow,

[DegRead( item [1], Vars) ,item[2]] endproc, NewGeneration);

ListInProg:= MakeUnique([op(ListInProg), op(NewGeneration)])

end do;

gc();

return ListInProg

end proc:

NotDivisibleBy := proc (TrialElt::list, Criterion::list, dim::integer)

local i;

description "Returns true exactly when TrialElt is NOT

divisible by Criterion, where both TrialElt and Criterion

are monomials expressed as integer lists. ";

for i to dim do

if TrialElt[i] - Criterion[i] < 0 then

return true

end if

end do;

return false
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end proc:

Exponentiate := proc (tuple, Vars)

local InProg, k;

description "Converts an integer list to a monomial, Vars[k]^(tuple[k])";

InProg:= [ ];

for k to nops(Vars) do

InProg:= [op(InProg), Vars[k]^tuple[ k]]

end do;

return mul( i ‘in‘ (i, InProg))

end proc:

MilnorBasis := proc (W::polynom, Vars::list, RawBasis)

local JacobIdeal, B, NearBasis;

description "Finds a basis for a Milnor ring given a larger basis.

Used to get a basis for the Milnor ring of a polynomial restricted

to a fixed locus, given the basis for the full polynomial’s Milnor ring";

if W = 0 then

return [ ]

else

JacobIdeal := convert(map(proc (a) options operator, arrow,

diff(W, a) end proc, Vars), set);

B := Basis(JacobIdeal,plex(op(Vars)));

NearBasis:= MakeUnique(NormalForm(RawBasis, B, plex(op(Vars))));

NearBasis:= map(DegRead,‘minus‘( {op(NearBasis)}, {0}), Vars);

NearBasis:= convert( map(Exponentiate, NearBasis, Vars), list);

return NearBasis

end if

end proc:
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TempWBasis:= proc (g, W, basisList, q, Vars)

local temporaryW,rawTemporaryBasis, tempCharges, i, goodTempBasis;

description "Gives a Milnor basis for the fixed locus of each group element,

and the charges for the fixed variables.

Neveu-Schwartz elements give the basis as 0, to distinguish them";

temporaryW:= W;

rawTemporaryBasis:= basisList; tempCharges := convert(q, list);

goodTempBasis:= [ ];

# Here we find the restriction of W to the fixed locus

for i to nops(Vars) do

if not g[i] = 0 then

temporaryW:= eval(temporaryw, Vars[i] = 0);

rawTemporaryBasis:= remove(has, rawTemporaryBasis, Vars[i])

end if

end do;

for i to nops(Vars) do

if DegRead( temporaryw, Vars)[i] < 1 then

tempCharges[i] := 0

end if

end do;

if temporaryW = 0 then

return [g, 0]

else

goodTempBasis:= MilnorBasis(temporaryw, Vars, rawTemporaryBasis);

return [g, goodTempBasis, tempCharges]

end if

endproc:
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TransposeW:= proc (w, Vars::list)

local listForm, i,j, Wtr;

description "Returns the transpose singularity

for those singularities which are invertible.";

Wtr:= 0;

if not type(W, ‘+‘) then

return W

elif not nops(W) = nops(Vars) then

print("Not an invertible singularity");

return NULL

else

listForm:= map(DegRead, [op(W)], Vars);

for i to nops(Vars) do

Wtr:= Wtr+ Exponentiate([seq(listForm[j,i], j=1.. nops(Vars))], Vars)

end do;

return Wtr

end if

end proc:

SortOutZeros := proc (L)

local i, Nonzero, Zero;

description "For a given input, returns a list of where the input entries

are NON-zero, and then where input entries are zero";

Nonzero:= [ ];

Zero := [ ];

for i to nops( L) do

if L[i] = 0 then

Zero := [op( Zero), i]
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else Nonzero := [op(Nonzero), i]

end if

end do;

return [Nonzero, Zero]

end proc:

IndexZeroSort:= proc (L::list)

local i, Zero, Neg2;

description "For computing index zero correlators:

returns where the list (presumably of line bundle degrees) has 0’s and -2’s,

and then the third component returns true exactly if there is one of each,

which is the only time we can (easily) compute the degree of the Witten map.";

Neg2:= [ ];

Zero := [ ];

for i to nops(L) do

if L[i] = 0 then

Zero := [op( Zero), i]

elif L[i] = - 2 then

Neg2:= [op(Neg2), i]

end if

end do;

return [Zero,Neg2, evalb(nops(Zero) = 1 and nops(Neg2) = 1)]

endproc:

IndexZeroValuesOut:= proc (W::polynom, Vars::list, genus::integer,

Charges, Correlators::listlist)

local NSCorrelators, IZCorrelators,TempData, position,

KnownCorrelatorValues, UnknownSet;

description "Computes all elementary index zero correlators
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from the given list (those with a Witten map from

a 1-dim space to a 1-dim space).";

KnownCorrelatorValues:= { };

UnknownSet:= { };

NSCorrelators:= select(NeveuSchwartz, Correlators);

IZCorrelators:= select(proc (corr) options operator, arrow,

IndexZeroTest(LBdegrees(genus,Charges, corr), genus) endproc,

NSCorrelators, genus);

for position to nops(IZCorrelators) do

TempData:=

IndexZeroSort(LBdegrees(genus, Charges, IZCorrelators[position]), genus);

if TempData[3] then

KnownCorrelatorValues:= ‘union‘(KnownCorrelatorValues,

{IZCorrelators[position] =

-degree(diff(W, Vars[TempData[2]]),Vars[TempData[1]])})

else UnknownSet:= ‘union‘(UnknownSet, {IZCorrelators[position]})

end if

end do;

return [KnownCorrelatorValues, UnknownSet]

end proc:

RamPairingOut := proc (W::polynom, Vars::list,

Charges::list, Correlators::listlist)

local position, CurrentReducedCorrelator, JacobIdeal, B, H, Hess,

CorrVal, FixedVars, RamondCorrelators, KnownCorrelatorValues,

UnknownSet, TempW, TempVars, i;

description "Computes all correlators determined by the pairing.

This is only useful for 3 point correlators. ";

KnownCorrelatorValues:= { };
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UnknownSet:= { };

RamondCorrelators:= remove(NeveuSchwartz, Correlators);

for position to nops(RamondCorrelators) do

CurrentReducedCorrelator:= remove(proc (item) options operator, arrow,

evalb(item[2] = Charges) end proc, RamondCorrelators[position]);

# We can reduce correlators which contain

# the identity of the ring (namely J),

# so we’re going to throw out the J inclusions,

# and work with the reduced correlator.

# For cases where we reduce it to a two point correlator,

# we can find the value through the pairing.

if nops(CurrentReducedCorrelator) = 2

and nops(RamondCorrelators[position]) = 3 then

# i.e. Is this a 3-point correlator that reduces to the pairing?

FixedVars := SortOutZeros(CurrentReducedCorrelator[1, 2])[2];

TempW:= W;

for i to nops(Vars) do

if not ‘in‘(i, FixedVars) then

Temp W:= eval(Temp W, Vars[i] = 0)

end if

end do;

JacobIdeal := convert(map(proc(a) options operator, arrow,

diff(TempW, a) endproc, Vars[FixedVars]), set);

B := Basis(JacobIdeal, plex(op(Vars[FixedVars])));

H := LinearAlgebra[Determinant](

VectorCalculus[Hessian](W,Vars)[FixedVars, FixedVars]);

Hess := NormalForm(H, B, plex(op( Vars[FixedVars])));
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# now we can directly compute the pairing

if

ListTools[DotProduct](

DegRead(mul(CurrentReducedCorrelator[i,3], i=1..2),Vars),

Charges) != add(1-2*k, ‘in‘(k, Charges[FixedVars])) then

KnownCorrelatorValues:=

‘union‘(KnownCorrelatorValues,{RamondCorrelators[position] = 0})

else

CorrVal := NormalForm(mul(

CurrentReducedCorrelator[i, 3], i = 1 .. 2)*

SectorMu(CurrentReducedCorrelator[1,2], Charges),

B, plex(op(Vars[FixedVars])));

KnownCorrelatorValues := ‘union‘(KnownCorrelatorValues,

{RamondCorrelators[position] = CorrVal/ Hess})

end if;

elif nops(RamondCorrelators[position])

= nops(CurrentReducedCorrelator) then

UnknownSet :=

‘union‘(UnknownSet, {RamondCorrelators[position]})

end if

end do;

UnknownSet:=

‘minus‘(convert(Correlators, set), map(lhs, KnownCorrelatorValues));

return [KnownCorrelatorValues,UnknownSet]

end proc:

ComputedFourPtCorrsOut := proc(W::polynom, Vars::list, genus::integer,

Charges, Correlators::listlist)
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local kappa, psi, DegSt, nu, istarDelta, i, CurrentCorr, LBD, node,

b, mark, Listq, Lambda, Theta, Denominator, KnownCorrelatorValues,

UnknownSet;

description "Finds the values of as many four-point correlators as

currently possible, without using the composition axiom. ";

KnownCorrelatorValues:= { };

UnknownSet:= { };

Listq := convert( Charges, list);

Denominator := mul( k, ‘in‘(k, DegRead(W,Vars)));

if type (W, ‘+‘) and nops( Vars) < nops( W) then

return "Not invertible singularity"

else

if igcd(op(map(denom,Charges)))

!= igcd(op(map(denom,Charges)), Denominator) then

Denominator := igcd(op(map(denom, Charges)))

end if

end if;

# As ugly as this is, it’s just direct computation

# of concave 4-point correlators.

kappa := 1 / Denominator;

psi := 1 / Denominator;

DegSt:= 1 / Denominator;

for nu to 3 do

istarDelta[nu] := 1 / (Denominator* r[nu])

end do;

if ‘not‘(nops(Correlators[1]) = 4) then

return "Four point only"

else
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for CurrentCorr in Correlators do

if ‘in‘(0,‘union‘(op(map(proc (item) options operator, arrow,

convert(op(2, item), set) endproc, CurrentCorr)))) then

UnknownSet:= ‘union‘(UnknownSet, {CurrentCorr})

else

LBD := LBdegrees(genus, Charges, CurrentCorr);

if AllNeg(LBD) then

for node to 3 do

b[node] := map(frac, [seq(8, i = 1 .. nops(Charges))]

+ Listq -CurrentCorr[1, 2]-CurrentCorr[node+ 1,2])

end do;

Lambda[CurrentCorr]:= simplify((map(proc (x) options operator, arrow,

(1/2)*X^2 - (1/2)*x + 1/12 end proc, Charges) * kappa

-add(map(proc (x) options operator, arrow, 1/12- (1/2) *x* (1-x) endproc,

CurrentCorr[mark, 2]), mark = 1 .. 4)*psi

+ add(r[node]*map(proc (x) options operator, arrow,

1/12- (1/2) * x * (1- x) end proc, b[node])

* istarDelta[node], node = 1 .. 3))/ DegSt);

KnownCorrelatorValues:= ‘union‘(KnownCorrelatorValues,

{CurrentCorr = add(k,‘in‘(k, Lambda[CurrentCorr]))})

else

UnknownSet := ‘union‘(UnknownSet, {CurrentCorr})

end if;

end if;

end do;

end if;

return [KnownCorrelatorValues, UnknownSet]

end proc:
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CompositionAxiom := proc (W::polynom, Vars::list, genus::integer,

Charges::list, Correlators::listlist)

local position, RamondSector, JacobIdeal, B, H, Hess,

PossiblePartnerMonomials, PartnerMonomial, FixedVars,

PartnerSector, Complements, FourPtClassCandidates,

PreDecompositions, FourPtChoice, DecompLefts, Decomp,

PartnerCorrelator, Summands, RamondPieces, EtaMatrix, InverseEta,

AlphasMatrix, BetasMatrix, Equations, UnknownSet, TempW, i;

description "Uses the composition axiom to find equations for

3-point, genus zero correlators to connect them to a computable

4-point class from the boundary. Will likely be extended

to larger correlators in future versions. ";

FourPtClassCandidates := { };

Equations := { };

UnknownSet := { };

for position to nops(Correlators) do

if nops(Correlators[position]) = 3 and

nops(remove(proc (item) options operator, arrow,

item [3] = 0 end proc, Correlators[position])) = 1 then

# We pick out three-point correlators with exactly one Ramond insertion

# Then we look at the fixed locus so we can find the sectors that

# will have non-zero pairing with the aforementioned Ramond sector

RamondSector:= op(remove(proc (item) options operator, arrow,

item [3] = 0 end proc, Correlators[position]));

FixedVars := SortOutZeros(RamondSector[2])[2];

JacobIdeal := convert(map(proc (a) options operator, arrow,

diff(W, a) endproc, Vars), set);

B := Basis(JacobIdeal, plex(op(Vars)));
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H := LinearAlgebra[Determinant](VectorCalculus[Hessian]

(W,Vars)[FixedVars, FixedVars]);

Hess := NormalForm(H, B, plex(op(Vars)));

PossiblePartnerMonomials :=

remove(proc (item) options operator, arrow,

NotDivisibleBy(item, DegRead(RamondSector[3], Vars), nops(Vars))

end proc, map(DegRead, [op(H)], Vars));

PossiblePartnerMonomials := map(proc (item) options operator, arrow,

Exponentiate(item - DegRead(RamondSector[3], Vars), Vars) end proc,

PossiblePartnerMonomials);

PossiblePartnerMonomials:= remove(proc (item) options operator, arrow,

evalb(NormalForm(item*RamondSector[3], B, plex(op(Vars))) = 0) end proc,

PossiblePartnerMonomials);

PartnerMonomial := PossiblePartnerMonomials[1];

# So I don’t actually go through all the possibilities for partners,

# I just take one. Really, it’s fast enough that you could probably

# go through all of them, but I don’t know that it wouldn’t be

# largely redundant information.

PartnerSector:=

[2 * iota( map( frac, [seq(8, i = 1 .. nops(Vars))]

- RamondSector[2]), Charges),

map(frac, [seq(8, i= 1 .. nops(Vars))] - RamondSector[2]), PartnerMonomial];

Complements := select(proc (item) options operator, arrow,

evalb(member(PartnerSector, item) and

nops(remove(proc (Corr) options operator, arrow,

evalb(Corr = PartnerSector) end proc, item))= 2) endproc, Correlators);
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# We find all the 3-pt correlators which contain the partner sector

FourPtClassCandidates:= map(proc (item) options operator, arrow,

[op(select(proc (sector) options operator, arrow,

evalb( sector[ 3] = 0) end proc

Correlators[position])), op(select(proc (sector) options operator, arrow,

evalb( sector[ 3] = 0) end proc, item))] endproc, Complements);

# We find all the possible four-point classes built from

# the two NS insertions of the original 3-point correlator,

# and the two NS sectors from a complementary

# 3-point correlator, that is, a 3-point correlator with two NS insertion

# and a Ramond sector which has a possibly non-zero pairing

# with the Ramond sector or the first correlator.

FourPtClassCandidates:= select(proc (item) options operator, arrow,

IndexZeroSort(LBdegrees(0, Charges, item), 0) [ 3 ] end proc,

CohoGoodResDimList( 0, Charges, FourPtClassCandidates));

# This filters it down to index zero 4-point classes

$ which we can explicitly compute.

if nops(FourPtClassCandidates) = 0 then

UnknownSet:= ‘union‘(UnknownSet, {Correlators[position]})

else

for FourPtChoice in FourPtClassCandidates do

PreDecompositions := {{{FourPtChoice[1], FourPtChoice[2]},

{FourPtChoice[3], FourPtChoice[4]}},

{{FourPtChoice[1], FourPtChoice[3]},

{FourPtChoice[2], FourPtChoice[4]}},

{{FourPtChoice[1], FourPtChoice[4]},

48



www.manaraa.com

{FourPtChoice[2], FourPtChoice[3]}}};

# There are three ways to decompose the 4-point class,

# and this explicitly constructs them.

Summands := [ ];

Decomp := op(select(proc (item) options operator, arrow,

evalb(item [ 1] = ‘minus‘(convert(Correlators[position], set),

{RamondSector})

or item [ -1] =

‘minus‘(convert( Correlators[position], set),

{RamondSector})) end proc,

PreDecompositions));

# We pick out decompositions of the 4-point class

# which use the NS sectors from the original 3-pt correlator

DecompLefts := select(proc (item) options operator, arrow,

evalb({op(map(proc (Corr) options operator, arrow,

Corr[2] end proc, item))} =

{Decomp[1,-1,2], Decomp[1,1,2], map(frac, [seq(8, k= 1 .. nops(Vars))]

- Decomp[1,1,2] - Decomp[1,-1,2] + Charges)}) end proc, Correlators);

# Picks out all 3-point correlators which contain

# the pair of insertions from Decomp.

# In particular, thistells us all the possible decorations of the edge, namely,

# the elements from the

# map(frac, [seq(8, k= 1 .. nops(Vars))]

# - Decomp[1,1,2] - Decomp[1,-1,2] + Charges) sector

# Now that we all the possible ways the edge can be decorated,

# we can apply the Composition axiom and just compute.
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if NeveuSchwartz(DecompLefts[1]) then

PartnerCorrelator:= op(select(proc (item) options operator, arrow,

evalb({op(map(

proc (Corr) options operator, arrow, Corr[2] end proc, item))}

= {Decomp[-1,-1,2], Decomp[-1,1,2],

map(frac, [seq( 8, k = 1 .. nops(Vars))]

Decomp[-1,1,2]-Decomp[-1,-1,2] + Charges)}) end proc, Correlators));

Summands:= [op(Summands),

AValue(DecompLefts[ 1]) * AValue(PartnerCorrelator) ]

else

RamondPieces:= map(proc (Corr) options operator, arrow,

add(sector[3], ‘in‘(sector, Corr)) endproc, DecompLefts);

FixedVars := SortOutZeros(RamondSector[2])[2];

Temp W:= W;

for i to nops(Vars) do

if not ‘in‘(i, FixedVars) then

TempW:= eval(TempW, Vars[i] = 0)

end if

end do;

JacobIdeal := convert( map(proc (a) options operator, arrow,

diff(TempW, a) endproc, Vars[FixedVars]), set);

B := Basis(JacobIdeal, plex(op(Vars[FixedVars])));

H := LinearAlgebra[Determinant](VectorCalculus[Hessian]

(W,Vars)[FixedVars, FixedVars]);

Hess := NormalForm(H, B, plex(op(Vars[FixedVars])));

# We compute the pairing matrix

EtaMatrix := Matrix(nops(RamondPieces), proc (i,j) options operator, arrow,

floor((1 + ListTools[DotProduct]

50



www.manaraa.com

(DegRead(RamondPieces[i]*RamondPieces[j],Vars), Charges))

/(1 +add(1-2*k, ‘in‘(k, Charges[FixedVars]))))

* SectorMu(RamondSector[2], Charges)

* NormalForm(RamondPieces[i]*RamondPieces[j], B, plex(op(Vars)))

* floor((1 + add(1-2*k,‘in‘(k, Charges[FixedVars])))

/ (1 + ListTools[DotProduct](

DegRead(RamondPieces[ i]*RamondPieces[j], Vars), Charges)))

/ Hess end proc);

AlphasMatrix := Matrix([map(AValue, DecompLefts)]);

BetasMatrix := Vector(map(proc (object) options operator, arrow,

A Value( op( object) ) end proc,

map(proc (Corr) options operator, arrow,

select(proc (item) options operator, arrow,

evalb( {op( map(proc (Corr) options operator, arrow,

Corr[2 .. 3] endproc, item))}

= {[Decomp[-1,-1,2],0],[Decomp[-1,1,2],0],

[map(frac, [seq(8, k= 1 .. nops(Vars))]

-Decomp[-1,1,2]-Decomp[-1,-1,2] + Charges), Corr]})

endproc, Correlators)

end proc, RamondPieces)));

InverseEta := MatrixInverse(EtaMatrix);

Summands := [op( Summands), op(

convert(AlphasMatrix.lnverseEta.BetasMatrix, list))]

end if;

Equations:= ‘union‘(Equations,{add(summand, ‘in‘(summand, Summands))

= rhs(IndexZeroValuesOut(

W, Vars, genus, Charges, [FourPtChoice])[1,1])})

end do;

end if;
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else UnknownSet:= UnknownSet union {Correlators[position]};

end if;

end do;

return [Equations,UnknownSet];

gc( )

end proc:

ComputedCorrsOut := proc (W::polynom, Vars::list, NumPoints,

genus::integer, Charges, CurlyH::listlist)

local NSCorrs, RamondCorrs, ConcaveCorrs, IndexZeroCorrs, ListlnProg,

ListInProgB, Degs,IsCCBoolean, PairRamond, LeftoverRamond, LeftoverNS, k,

KnownCorrelatorValues, UnknownSet, NewData, CompositionData, Eqn, TempSolns,

OutputEqns, SolvedEqns, SimplifiedFormEqns;

description "Returns as much data as possible on the values

for the specified size and genus of correlator.

For 3-point, genus-zero correlators, this will be enough to verify

the isomorphism with the appropriate Milnor ring. ";

KnownCorrelatorValues := { };

UnknownSet := { };

ConcaveCorrs := [ ];

IndexZeroCorrs := [ ];

LeftoverNS := [ ];

ListInProg := selectremove(NeveuSchwartz,

HomZeroDimList(genus, Charges, AlllntList(NumPoints, genus, Charges, CurlyH)));

ListInProgB := [[ ], [ ]];

NSCorrs := ListlnProg[1];

RamondCorrs := ListlnProg[2];

ListInProgB:= selectremove(HasUnit, RamondCorrs, Charges);

if NumPoints = 3 then
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PairRamond := ListInProgB[1]

else

PairRamond := [ ]

end if;

LeftoverRamond := ListInProgB[2];

Degs := map[3](LBdegrees, genus, Charges, NSCorrs);

IsCCBoolean := map(AIlNeg, Degs);

for k to nops(NSCorrs) do

if IsCCBoolean[k] then

ConcaveCorrs:= [op(ConcaveCorrs), NSCorrs[k]]

elif IndexZeroTest(Degs[k], genus) then

IndexZeroCorrs := [op(IndexZeroCorrs), NSCorrs[k]]

elif not HasUnit(NSCorrs[k],Charges) then

LeftoverNS:= [op(LeftoverNS), NSCorrs[k]]

end if

end do;

if 0 < nops(PairRamond) then

NewData := RamPairingOut(W, Vars, Charges, PairRamond);

KnownCorrelatorValues := ‘union‘(KnownCorrelatorValues, NewData[1]);

UnknownSet := ‘union‘(UnknownSet, NewData[2])

end if;

UnknownSet := ‘union‘(UnknownSet, convert(LeftoverRamond, set));

if NumPoints = 3 and 0 < nops( ConcaveCorrs) then

KnownCorrelatorValues := ‘union‘(KnownCorrelatorValues,

map( proc (item) options operator, arrow, item = 1

end proc, convert(ConcaveCorrs, set))

elif NumPoints = 4 and 0 < nops(ConcaveCorrs) then

NewData := ComputedFourPtCorrsOut(W, Vars, genus, Charges, ConcaveCorrs);

KnownCorrelatorValues:= ‘union‘(KnownCorrelatorValues, NewData[ 1]);
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UnknownSet:= ‘union‘(UnknownSet, NewData[2])

else UnknownSet:= ‘union‘(UnknownSet, convert(ConcaveCorrs, set))

end if;

if 0 < nops(IndexZeroCorrs) then

NewData := IndexZeroValuesOut(W, Vars, genus, Charges, IndexZeroCorrs);

KnownCorrelatorValues:= ‘union‘(KnownCorrelatorValues, NewData[1]);

UnknownSet:= ‘union‘(UnknownSet, NewData[2])

end if;

if 0 < nops(LeftoverNS) then

UnknownSet = ‘union‘(UnknownSet,convert(LeftoverNS, set))

end if;

if ‘not‘(genus = 0 and NumPoints = 3) then

return [KnownCorrelatorValues, UnknownSet]

else

if nops( UnknownSet) = 0 then

CompositionData:= [{ }, { }];

else

CompositionData := CompositionAxiom(W, Vars, 0,

Charges, [op(UnknownSet)]);

end if;

SolvedEqns := { };

OutputEqns := { };

SimplifiedFormEqns := { };

for Eqn in simplify(eval(‘minus‘(CompositionData[1], SolvedEqns),

map(proc (item) options operator, arrow,

AValue( lhs( item)) = rhs( item) end proc, KnownCorrelatorValues))) do

if type(op(-1, sort(lhs(Eqn))), rational) then

SimplifiedFormEqns:= ‘union‘(SimplifiedFormEqns,

{lhs(Eqn) - op(-1, sort(lhs( Eqn) )) = rhs(Eqn) - op(-1, sort(lhs(Eqn)))})
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else

SimplifiedFormEqns:= ‘union‘(SimplifiedFormEqns, {Eqn})

end if

end do;

return [KnownCorrelatorValues,

simplify(‘union‘(SimplifiedFormEqns, OutputEqns)), CompositionData[2]]

end if

end proc:

> ChooseWithRepeats:= proc (n::integer, k::integer)

local i, j, L, LP;

description "Chooses all k-combos with repeats from 1 to n.";

option remember;

LP:= [ ];

if 0 < k then

L := Choose WithRepeats(n, k-l);

if L = [ ] then

for j to n do

LP:= [op(LP), [j]]

end do;

else

for i to nops(L) do

for j from L[i, -1] to n do

LP := [op( LP), [op( L[ i]), j]]

end do;

end do;

end if;

end if;

return LP
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end proc:

cHat := proc (g::list, Charges::list)

return add(1-2*Charges[i], i = SortOutZeros(g)[2])

endproc:

sPlus := proc (g::list, Charges::list)

return cHat( [seq(0, i = 1 .. nops(Charges))], Charges) - cHat(g, Charges)

end proc:

sMinus:= proc (g::list, Charges::list)

return add(2*g[i]-1, i = SortOutZeros(g)[1])

end proc:

kaufmannS:= proc (g::list, Charges::list)

return (1/2) * sPlus(g, Charges) + (1/2) * sMinus(g, Charges)

end proc:

kaufmannSbar := proc (g::list, Charges::list)

return (1 / 2) * sPlus(g, Charges) - (1/2) * sMinus(g, Charges)

end proc:

Rshift := proc (g::list, Charges::list)

return (1/2) * cHat(g, Charges)

end proc:

ngamma := proc (g:: list)

description "Ngamma is the number of variable fixed by a group element,

hence the number of zeros in the given list";
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return nops(SortOutZeros(g)[2])

end proc:

iota := proc (g::list, Charges::list)

return kaufmannS(g, Charges) + Rshift(g,Charges)

end proc:

SectorMu := proc (g::list, Charges::list)

local fixedVars;

description "The dimension of the Milnor ring of

the group element’s fixed locus.";

FixedVars := SortOutZeros(g)[2];

if nops(fixedVars) = 0 then

return 0

else

return mul(1/Charges[i] -1, i = FixedVars)

end if

end proc:

LBdegrees := proc (genus:: integer, Charges::list, Correlator::list)

local SectorList;

description "Computes the line bundle degrees of a given correlator.";

SectorList:= map(proc (item) options operator, arrow,

op(2, item) end proc, Correlator);

return [seq(Charges[i] * (2 * genus-2 + nops(Correlator))

- add(g[i], g = SectorList), i = 1 .. nops(Charges))]

endproc:

TestDegs := proc (K::list)
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description "Returns true exactly when fed a list of only integers.";

return andmap( type, K, integer)

end proc:

MakeCorrelators := proc (CurlyH::list, NumPoints::integer)

local preList;

description "Makes a list of all possible correlators of the specified size

from the given basis CurlyH.

Note that most will be zero, and will be filtered out later.";

preList := ChooseWithRepeats(nops(CurlyH), NumPoints);

return map(proc (Corr) options operator, arrow,

sort(map(proc (item) options operator, arrow, op(item, CurlyH) endproc, Corr),

proc (a, b) options operator, arrow,

evalb( a[1] < b[1] or a[1] = b[1] and degree(a[3]) < degree(b[3]))

end proc) end proc, preList)

end proc:

AlllntList := proc (NumPoints, genus, Charges, CurlyH)

local RawList, Degs, IsIntBoolean, AlllntDegreesList, k;

description "Produces a list of all correlators which have

only integer line bundle degrees.

Only these correlators are potentially non-zero.";

option remember;

RawList := MakeCorrelators(CurlyH, NumPoints);

AlllntDegreesList := [ ];

Degs := map[3](LBdegrees, genus, Charges, RawList);

IsIntBoolean := map(TestDegs, Degs);

for k to nops(Degs) do

if IsIntBoolean[k] then
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AlllntDegreesList:= [op(AlllntDegreesList), RawList[k]]

end if

end do;

return AlllntDegreesList

end proc:

AllNeg := proc (K:: list)

description "Returns true exactly if all items in the list

are less than zero.";

return andmap(proc (item) options operator, arrow,

evalb(item < 0) end proc, K)

end proc:

IndexZeroTest:= proc (LBDsOfCorrelator:: list, genus)

description "IF fed an Neveu-Schwartz correlator,

will tell you if it’s Index Zero.";

return evalb(add( i, i = LBDsOfCorrelator)

= (genus-1)*nops(LBDsOfCorrelator))

end proc:

Dim := proc (genus:: integer, Charges, L::list)

local SectorList;

description "Algebraic Cohomological dim of correlator";

SectorList := map(proc (item) options operator, arrow,

op(2, item) endproc, L);

return (genus-1) * cHat([seq(0, i = 1 .. nops( Charges))], Charges)

+ add(kaufmannS(g, Charges) + (1/2)*cHat(g, Charges), g = SectorList)

end proc:
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NeveuSchwartz := proc (correlator)

local Monomials;

description "Returns true exactly if the given correlator

has only Neveu-Schwartz sectors.";

Monomials := convert(map(proc (item) options operator, arrow,

op(3, item) endproc, correlator), set);

return evalb(Monomials = {0})

endproc:

HasUnit := proc (correlator::list, unit:: list)

local SectorList;

description "Returns true exactly if the correlator

contains the unit of the ring.";

SectorList := map(proc (item) options operator, arrow,

op(2, item) end proc, correlator);

return member(unit, SectorList)

end proc:

SortedCorrelators:= proc (NumPoints, genus, Charges, CurlyH)

local NSCorrs, RamondCorrs, ConcaveCorrs, IndexZeroCorrs,

ListInProg, ListInProgB, Degs, IsCCBoolean, PairRamond,

LeftoverRamond, ReducNS, LeftoverNS, k;

description "Sorts all potentially non-zero correlators of the

given size and genus by how (and if) the can be computed directly.";

ConcaveCorrs := [ ];

IndexZeroCorrs := [ ];

ReducNS := [ ];

LeftoverNS := [ ];

ListInProg := selectremove(NeveuSchwartz,
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HomZeroDimList(genus, Charges,

AllIntList(NumPoints, genus, Charges, CurlyH)));

ListInProgB := [[ ], [ ]];

NSCorrs := ListInProg[1];

RamondCorrs := ListInProg[2];

ListInProgB := selectremove(HasUnit, RamondCorrs, Charges);

if NumPoints = 3 then

PairRamond := ListInProgB[1]

else

PairRamond := [ ]

end if;

LeftoverRamond := ListInProgB[2];

Degs := map[3](LBdegrees, genus, Charges, NSCorrs);

IsCCBoolean := map(AllNeg, Degs);

for k to nops(NSCorrs) do

if IsCCBoolean[k] then

ConcaveCorrs := [op( ConcaveCorrs) , NSCorrs[k]]

elif IndexZeroTest(Degs[k], genus) then

IndexZeroCorrs:= [op(IndexZeroCorrs) ,NSCorrs[k]]

elif not HasUnit(NSCorrs[k], Charges) then

LeftoverNS := [op(LeftoverNS), NSCorrs[k]]

end if

end do;

print( ‘Ramond correlators determined by pairing ‘,op(PairRamond));

print( ‘Other Ramond correlators ‘* op(LeftoverRamond));

print( ‘Concave (NS) correlators ‘ op(Con cave Corrs)) ;

print( ‘Index Zero (NS) correlators ‘,op(IndexZeroCorrs));

print( ‘Other Neveu-Schwartz correlators ‘* op(LeftoverNS))

end proc:
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HomZeroDimList:= proc (genus:: integer, Charges, K:: list)

local i, trips;

description "Find those correlators that have cohoDim=3 g-3+k, or HomDim=0.

These are the ones that have a potentially non-zero

correlator without descendants. ";

trips:= [ ];

for i to nops(K) do

if Dim (genus, Charges, K[i]) = 3 * genus- 3 + nops(K[i]) then

trips := [op( trips), K[i]]

end if

end do;

return trips

end proc:

CohoZeroDimList:= proc (genus:: integer, Charges, K::list)

local i, trips;

description "Find those correlators that have cohoDim = 0,

or HomDim = 3g - 3 + k. ";

trips:= [ ];

for i to nops(K) do

if Dim (genus, Charges, K[i]) = 0 then

trips:= [op(trips), K[i]]

end if

end do;

return trips

end proc:

CohoGoodResDimList := proc (genus:: integer, Charges, K::list)
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local i, trips;

description "Find those correlators that have cohoDim = 1 less than expected,

or HomDim = 3g-3+k-1. These are the ones that restrict nicely to the boundary";

trips:= [ ];

for i to nops(K) do

if Dim (genus, Charges, K[i]) = 3*genus-4 + nops(K[ i]) then

trips:= [op(trips), K[i]]

end if

end do;

return trips

end proc:

ZeroRestrictList := proc (NumPoints::integer, genus:: integer,

Charges::list, CurlyH::list)

local i, LBD, ZeroResList, CcBoolean, IndZeroBoolean;

description "Lists correlators with coho dim=0, integral line bundle degrees,

and indicates if concave. ";

ZeroResList := CohoZeroDimList(genus, Charges,

AlllntList(NumPoints, genus, Charges, CurlyH));

if evalb(nops(ZeroResList) = 0) then

print( ’none found ’)

end if;

for i to nops(ZeroResList) do

CcBoolean := false;

IndZeroBoolean := false;

LBD := LBdegrees(genus, Charges, ZeroResList[i]);

if NeveuSchwartz (ZeroResList[i]) and AllNeg(LBD) then

CcBoolean:= true

end if;
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if IndexZeroTest(LBD, genus) then

IndZeroBoolean := true

end if;

printf("\n Correlator \%a concave \%a index zero \%a LB degrees \%a",

ZeroResList[ i], CcBoolean, IndZeroBoolean, LBD)

end do

end proc:

GoodRestrictList := proc (NumPoints::integer, genus:: integer,

Charges::list, CurlyH::list)

local i, LBD, GoodResList, CcBoolean, IndZeroBoolean;

description "Lists correlators with coho dim = 3g-3+n-l,

integral line bundle degrees, and indicates if concave. ";

GoodResList := CohoGoodResDimList(genus, Charges,

AlllntList(NumPoints, genus, Charges, CurlyH));

if evalb(nops(GoodResList) = 0) then

print( ’none found ’)

end if;

for i to nops(GoodResList) do

CcBoolean := false;

IndZeroBoolean := false;

LBD := LBdegrees(genus, Charges, GoodResList[i]);

if NeveuSchwartz(GoodResList[i]) and AllNeg(LBD) then

CcBoolean := true

end if;

if IndexZeroTest(LBD, genus) then

IndZeroBoolean := true

end if;

printf("\n Correlator \%a concave: \%a index zero: \%a LB degrees \%a",
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GoodResList[i], CcBoolean, IndZeroBoolean, LBD)

end do

end proc:

> GetCoordinates:= proc (BasisVectors, GroupElt:: list)

local Modulus, BasisMatrix, ModGroupElt, Solution;

description "Finds how to express the given group element

as a linear combination of the specified ordered list of generators. ";

Modulus := ilcm(op(map(proc (item) options operator, arrow,

ilcm(op(map(denom, item))) endproc, BasisVectors)));

ModGroupElt := Modulus * GroupElt;

BasisMatrix := Matrix([op(map(proc (item) options operator, arrow,

Modulus*item end proc, BasisVectors}), ModGroupElt]);

BasisMatrix := LinearAlgebra[Modular]

[Mod](Modulus, Transpose(BasisMatrix), integer[ ]);

try Solution := Linear Algebra[Modular]

[LinearSolve](Modulus, BasisMatrix, 1, inplace = false)

catch "matrix is singular":

print("Given group element is not generated by

the input set of basis vectors");

return FAIL

end try;

return op (convert(Solution, list)[1 .. nops(BasisVectors)])

end proc:

CompactOutputFormatting := proc (BasisVectors, Sector:: list)

description "Returns the compact notation version of the specified sector.

Group element is given as a tuple with respect to

the ordered set of generators given.";
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if Sector [3] = 0 then

return e[GetCoordinates(BasisVectors, Sector [2])]

elif Sector [3] = 1 then

return ’@’ * e[GetCoordinates(BasisVectors, Sector [2])]

# This is for when we need the monomial 1 from a nontrivial Milnor ring.

else

return Sector[3] * e[GetCoordinates(BasisVectors, Sector[2])]

end if

end proc:

BigOutputConversion := proc (TargetObject, BasisVectors, ABasis::listlist)

local SectorConversions;

description "Returns the target object with all A-model sectors

expressed in the more compact notation.

Note this is specific to a given ordered set of generators for the group.";

SectorConversions := map(proc (item) options operator, arrow,

item = CompactOutputFormatting(BasisVectors, item) end proc, ABasis);

return eval(TargetObject, SectorConversions)

end proc:

BMultiply:= proc (FirstTerm, SecondTerm, W:: polynom, Vars:: list)

local ReducFirstMonomial, ReducSecondMonomial, Gamma,

FixedVars1, FixedVars2, Fix1and2, Hess1and2, TempW, JacobIdeal,

B, H, Hess, GroupProd, GroupProdZeros, i, ProductHess,

GroupProdZerosList, FinalMonomial;

description "Performs multiplication of elements for an orbifold B-model. ";

if FirstTerm = 0 or SecondTerm = 0 then

return 0

end if;
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FixedVars1 := SortOutZeros(FirstTerm[2])[2];

TempW:= W;

for i to nops(Vars) do

if not ‘in‘(i, FixedVars1) then

TempW:= eval(TempW, Vars[i] = 0)

end if

end do;

JacobIdeal := convert(map(proc (a) options operator, arrow,

diff(TempW, a) endproc, Vars[FixedVars1]), set);

B := Basis(JacobIdeal, plex(op(Vars)));

H := LinearAlgebra[Determinant](VectorCalculus[Hessian]

(W, Vars)[FixedVars1, FixedVars1]);

Hess := NormalForm(H, B, plex(op(Vars)));

if FirstTerm[3] = 0 then

ReducFirstMonomial := 1

else

ReducFirstMonomial := NormalForm(FirstTerm[3], B, plex(op(Vars)))

end if;

FixedVars1 := convert(FixedVars1, set);

FixedVars2 := SortOutZeros(SecondTerm[2])[2];

TempW:= W;

for i to nops(Vars) do

if not ‘in‘(i, FixedVars2) then

TempW:= eval(TempW, Vars[i] = 0)

end if

end do;

JacobIdeal := convert(map(proc (a) options operator,

arrow, diff(TempW, a) endproc, Vars[FixedVars2]), set);

B := Basis(JacobIdeal, plex(op(Vars)));
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H := LinearAlgebra[Determinant](VectorCalculus[Hessian]

(W, Vars)[FixedVars2, FixedVars2]);

Hess := NormalForm(H, B, plex(op(Vars)));

if SecondTerm[3] = 0 then

ReducSecondMonomial := 1

else

ReducSecondMonomial := NormalForm(SecondTerm[3], B, plex(op(Vars)))

end if;

FixedVars2:= convert(FixedVars2, set);

Fix1and2 := convert(‘intersect‘(FixedVars1, FixedVars2), list);

TempW:= W;

for i to nops(Vars) do

if not ‘in‘(i, Fix1and2) then

TempW:= eval(TempW, Vars[i] = 0)

end if

end do;

JacobIdeal := convert(map(proc (a) options operator, arrow,

diff(TempW, a) end proc, Vars[Fix1and2]), set);

B := Basis(JacobIdeal, plex(op(Vars)));

H := LinearAlgebra[Determinant](VectorCalculus[Hessian]

(W, Vars)[Fix1and2, Fix1and2]);

Hess1and2 := NormalForm(H, B, plex(op(Vars)));

GroupProdZerosList := SortOutZeros(map(frac, FirstTerm[2]

+ SecondTerm[2]))[2];

GroupProdZeros := convert( GroupProdZerosList, set);

if nops(‘union‘(‘union‘(GroupProdZeros, FixedVars1), FixedVars2))

< nops(Vars) then

return 0

else
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TempW:= W;

for i to nops(Vars) do

if not ‘in‘(i, GroupProdZerosList) then

TempW:= eval(TempW, Vars[i] = 0)

end if

end do;

JacobIdeal := convert( map(proc (a) options operator, arrow,

diff( TempW, a) end proc, Vars) , set);

B := Basis(JacobIdeal, plex( op( Vars)));

H := LinearAlgebra[Determinant](VectorCalculus[Hessian]

(TempW, Vars)[GroupProdZerosList, GroupProdZerosList]);

ProductHess := NormalForm(H, B, plex(op(Vars)))

end if;

if nops(GroupProdZerosList) = 0 and nops(Fix1and2) = 0 then

Gamma := ProductHess / Hess1and2

elif nops(GroupProdZerosList) = 0 then

Gamma := ProductHess*nops(Fix1and2)/Hess1and2

elif nops( Fix 1 and2) = 0 then

Gamma := ProductHess / (Hess1and2 * nops( GroupProdZerosList))

else Gamma := ProductHess*nops(Fix1and2)/(Hess1and2*nops(GroupProdZerosList))

end if;

FinalMonomial := Gamma*ReducFirstMonomial*ReducSecondMonomial;

for i to nops(Vars) do

if not ‘in‘(i, GroupProdZerosList) then

FinalMonomial := eval(FinalMonomial, Vars[i] = 0)

end if

end do;

if NormalForm(FinalMonomial, B, plex( op( Vars))) = 0 then

return 0
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else

return [FirstTerm[1] + SecondTerm[1],

map(frac, FirstTerm[2] + SecondTerm[2]),

NormalForm(FinalMonomial, B, plex(op( ars)))]

end if

end proc:

MultiplicationTable := proc (W:: polynom, Vars::list, BBasis::listlist)

local m, MultTable, OrderedBBasis;

description "Returns a matrix which is

a multiplication table for an orbifold B-model.";

m := nops(BBasis);

OrderedBBasis:= sort(BBasis, proc (a, b) options operator, arrow,

evalb(a[1] < b[1] or a[1] = b[1] and degree(a[3]) < degree(b[3])) end proc);

MultTable := Matrix(m, proc (i,j) options operator, arrow,

BMultiply(OrderedBBasis[i], OrderedBBasis[j], W, Vars) end proc);

return MultTable

end proc:

BPairingMatrix := proc (W:: polynom, Vars::list, BBasis::listlist)

local m, MultTable, OrderedBBasis;

description "Returns a matrix displaying the pairing

for the Milnor ring given.";

m := nops(BBasis);

OrderedBBasis := sort(BBasis, proc (a, b) options operator, arrow,

evalb( a[1] < b[1] or a[1] = b[1] and degree( a[3]) < degree( b[3])) end proc);

MultTable := Matrix(m, proc (i,j) options operator, arrow,

BMultiply(OrderedBBasis[i], OrderedBBasis[j], W, Vars) end proc);

return map(proc (item) options operator, arrow,
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floor (item [1]/ OrderedBBasis[-1, 1]) * item [-1]

/ Exponentiate(DegRead(item [-1],Vars), Vars) end proc, MultTable)

end proc:

BCorrs := proc (W:: polynom, Vars::list, BBasis::listlist)

local m, NewProduct, CorrsSet, CorrsProducts, OrderedBBasis,

i, j, MaxDegree, OutputSet;

description "Returns the correlators for the orbifold B-model

with the given basis. This allows the construction of all possible isomorphisms

from the B-model to the A-model using the IsomorphismFinder command. ";

CorrsSet:= { };

m := nops(BBasis);

OrderedBBasis := sort(BBasis, proc (a, b) options operator, arrow,

evalb( a[1] < b[1] or a[1] = b[1] and degree(a[3]) < degree(b[3])) end proc);

MaxDegree := OrderedBBasis[-1,1];

CorrsSet:= select(proc (item) options operator, arrow,

evalb( add(k[ 1], ‘in‘ (k, item)) = MaxDegree) end proc,

MakeCorrelators(BBasis, 3));

CorrsProducts:= map(proc (item) options operator, arrow,

BMultiply(BMultiply(item[1], item[2], W, Vars), item [3], W, Vars)[3]

end proc, CorrsSet);

OutputSet:= {seq(CorrsSet[i] = CorrsProducts[i]

/ Exponentiate(DegRead(CorrsProducts[i], Vars),Vars),

i = 1 .. nops(CorrsSet))};

return OutputSet

end proc:

> ConvertExpressions:= proc (Correlator::listlist,

ABasis::listlist, BBasis::listlist)
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local OrderedABasis, OrderedBBasis, ConversionMatrix, listPlace,

CorrPlace, CorrCoeffs, dim, BVec, BTerms, BuildCorrLists, CurrentCorrList,

term, TermMultiset, sectorFactor, i, NormOrderedADegrees, NormOrderedBDegrees;

description "Converts A-model correlators into B-model correlators,

where BtoA_i,j are the coefficients of a linear map

from the B basis to the A basis.

Note this forces the map to respect the grading,

and makes it easy to see that you get isomorphisms. ";

dim := nops(ABasis);

OrderedABasis := sort(ABasis, proc (a, b) options operator, arrow,

evalb(a[1] < b[1] or a[1] = b[1] and degree(a[3]) < degree(b[3])) end proc);

OrderedBBasis := sort(BBasis, proc (a, b) options operator, arrow,

evalb(a[1] < b[1] or a[1] = b[1] and degree(a[3]) < degree(b[3])) end proc);

NormOrderedADegrees := map(proc (item) options operator, arrow,

item[1] endproc, OrderedABasis);

NormOrderedBDegrees := map(proc (item) options operator, arrow,

2 * item[1] end proc, OrderedBBasis);

if not NormOrderedADegrees = NormOrderedBDegrees then

print("The given bases do not have compatible gradings.");

return NULL

end if;

ConversionMatrix := Matrix(dim, proc (i,j) options operator, arrow,

BtoA [i, j] * floor ((1 + OrderedABasis[i,1]) / (1 + OrderedABasis[j, 1]) )

* floor((1 + OrderedABasis[j, 1])/(1 + OrderedABasis[j,1])) endproc);

CorrCoeffs := [];

BVec := Vector[row]([seq(V[i], i = 1 .. dim) ]);

for listPlace to dim do

for CorrPlace to nops(Correlator) do

if Correlator[CorrPlace] = OrderedABasis[listPlace] then
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CorrCoeffs:= [op(CorrCoeffs),

BVec.ConversionMatrix.UnitVector(listPlace, dim)]

end if

end do

end do;

BTerms := expand(mul(i ‘in‘(i, CorrCoeffs)));

if type(BTerms,‘+‘) then

BTerms := map(proc (item) options operator, arrow,

item/Exponentiate(DegRead(item, [seq(V[i], i = 1 .. dim)]),

[seq(V[i], i = 1 .. dim)]) end proc, [op(BTerms)], [seq(V[i], i = 1 .. dim) ])

else BTerms := [BTerms/ Exponentiate(

DegRead(BTerms, [seq(V[i], i = 1 .. dim)]),

[seq(V[i], i = 1 .. dim)])]

end if;

BuildCorrLists:= [ ];

for term in BTerms do

TermMultiset := convert(term, multiset);

CurrentCorrList:= [ ];

for sectorFactor in TermMultiset do

if not type(sectorFactor[1], rational) then

for i to sectorFactor[2] do

CurrentCorrList:= [op(CurrentCorrList), op( 1, sectorFactor[1])]

end do

end if

end do;

BuildCorrLists := [op(BuildCorrLists), sort( CurrentCorrList)]

end do;

BTerms := map(proc (item) options operator, arrow,

eval(item, BtoA[1, 1] = 1) end proc,BTerms);
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return add(i ‘in‘(i,seq(BTerms[i] * BValue(OrderedBBasis[BuildCorrLists[i]]),

i = 1 .. nops(BTerms))))

end proc:

FindSubsTargets := proc (Eqn::equation, ABasis::listlist, BBasis::listlist)

local Parts, SubsEqns;

description "Finds all occurances of AValue() in an equation

and prepares an equation for substituting in the relevant B-model correlator.";

Parts:= ‘union‘( ‘union‘(convert(select(proc (item) options operator, arrow,

op(0, item) = AValue end proc,

map(op, [op( Ihs(Eqn))])), set),

convert(select(proc (item) options operator, arrow,

op(0, item) = AValue end proc, [op(lhs(Eqn))]), set)),

convert(select(proc (item) options operator, arrow, op(0, item)

= AValue end proc, map(op, map(op, [op(lhs(Eqn))]))), set));

SubsEqns:= map(proc (item) options operator, arrow,

item = ConvertExpressions(op(item) , ABasis, BBasis) endproc, Parts);

return SubsEqns

end proc:

IsomorphismFinder := proc (CompCorrsOutput::list,

ABasis::listlist, BBasis::listlist, W:: polynom, Vars::list)

local KnownCorrs, CompositionSubs, CompositionCorrs, TotalEqns,

BValues, Parts, Divided, BtoACoeffs, k;

description "Given two bases, we first check that the gradings match,

and then find all possible linear maps which respect the grading

and respect the A-model multiplication.

Note that multi-dimensional Ramond sectors give degrees of freedom,

and so there may be many solutions given.
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BtoA_i,j is the projection of the image of the ith Bmodel basis element,

ordered by degree, onto the jth A-model basis element, again ordered by degree.

Zero can occur as a value for BtoAJ,j,

but only in multi-dimensional Ramond sectors. ";

if not nops(ABasis) = nops(BBasis) then

print("Dimensions do not match");

return NULL

end if;

KnownCorrs := map(proc (item) options operator, arrow,

ConvertExpressions(lhs(item), ABasis, BBasis) = rhs(item) end proc,

CompCorrsOutput[1]);

CompositionSubs := map(proc (item) options operator, arrow,

op(FindSubsTargets(item, ABasis, BBasis)) end proc, CompCorrsOutput[2]);

BValues:= map(proc (item) options operator, arrow,

BValue(lhs(item)) = rhs(item) end proc, BCorrs(W, Vars, BBasis));

CompositionCorrs := subs(CompositionSubs, CompCorrsOutput[2]);

TotalEqns:= simplify(eval(‘union‘(KnownCorrs, CompositionCorrs), BValues));

BtoACoeffs:= { };

Parts:= map(op, TotalEqns);

for k to 3 do

Parts := remove(type, Parts, rational);

Divided := selectremove(proc (item) options operator, arrow,

evalb(op(0, item) = BtoA) endproc, Parts);

BtoACoeffs:= ‘union‘(BtoACoeffs, Divided[1]);

Parts:= map(op, Divided[2])

end do;

BtoACoeffs:= convert(BtoACoeffs, list);

return solve(TotalEqns, BtoACoeffs)

end proc:
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MinimalGenSet := proc (Group::listlist)

local CompMins, position, PreBasisList, SoFar, TriedGens,

SpanOfTriedGens, Excess;

description "Finds a minimal generating set for the group given.

If the input is not a group, it will return a minimal generating set

for the group generated by the input data. ";

CompMins:= { };

if nops( Group) = 1 then

return convert( Group, set)

end if;

for position to nops( Group[ 1 ]) do

# CompMins is for component minimums.

# We’re going to collect a set of group elements by taking one

# with the minimum phase in a given position,

# as position sweeps through all the possibilites

if not CompMins = convert(Group, set) then

CompMins :=

‘union‘(CompMins, {sort(remove(proc (item) options operator, arrow,

‘in‘(item, CompMins) endproc, Group),

proc (a, b) options operator, arrow,

evalb(op(position, a) < op(position, b) and 0 < op(position, a)

or 0 < op(position, a) and op(position, b) = 0)

or evalb(op(position, a) = op(position, b)

and add(i ‘in‘(i,a)) < add(j,‘in‘(j, b))) end proc)[1]})

end if

end do;

PreBasisList := sort(convert(CompMins, list), proc (a, b)

options operator, arrow,
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max(map(denom, b)) < max(map(denom, a)) endproc);

TriedGens := { };

SpanOfJriedGens:= {[seq(0, i = 1 .. nops( Group[1]))]};

while nops(SpanOfJriedGens) < nops(Group) and 0 < nops(PreBasisList) do

TriedGens:= ‘union‘(Tried Gens, {PreBasisList[1]});

SpanOfTriedGens:= ‘union‘(map(proc (item) options operator, arrow,

seq(map(frac, k*PreBasisList[1] + item),

k= 0 .. ilcm(op(map(denom,PreBasisList[1]))) - 1) end proc,

SpanOfTriedGens));

PreBasisList := remove(proc (item) options operator, arrow,

member(item, SpanOfTriedGens) end proc, PreBasisList)

end do;

if ‘not‘(SpanOfTriedGens = convert(Group, set)) then

print("The input to MinimalGenSet is not an additive group mod 1");

Excess:= ‘minus‘(convert( Group, set), SpanOfTriedGens);

if 0 < nops(Excess) then

TriedGens := MakeGroup(convert( union‘(Excess, TriedGens), list), 1,

[seq(x[i], i = 1 .. nops(Group[1]))])[2]

end if

end if;

return TriedGens

end proc:

MakeGroup := proc (Generators::list, W::polynom, Vars::list)

local Subgps, RelatorsLeft, SubGpPlace, CombinedlnProg,

BigGroup, ResultGroup;

description "Returns the group with the given generators,

and obeying the relations expressed by setting each term of W to be the identity,

along with a minimal generating set for this group.
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Setting W = 1 imposes no relations beyond being additive mod 1,

and W=0 gives the trivial group. ";

if type(W, ‘+‘) then

RelatorsLeft:= map(DegRead, {op(W)},Vars)

else

RelatorsLeft:= [DegRead(W, Vars)]

end if;

Subgps := map(proc (item) options operator, arrow,

{seq( map( frac, k* item), k = 1 .. ilcm(op(convert(map(denom, item), list))))}

endproc, Generators);

while 1 < nops(Subgps) do

CombinedlnProg:= {seq(seq(i+j, ‘in‘(i, Subgps[1])), ‘in‘(j, Subgps[2]))};

Subgps := [CombinedlnProg, op(Subgps[3 .. -1])]

end do;

BigGroup := op(Subgps);

while 0 < nops(RelatorsLeft) do

BigGroup := remove(proc (item) options operator, arrow,

not type(ListTools[DotProduct](convert(item,list),

RelatorsLeft[1]), integer) end proc, BigGroup);

RelatorsLeft := RelatorsLeft[2 .. -1]

end do;

if nops(Big Group) = 0 then

Big Group := [[seq(0, c = 1 .. nops(Vars))]]

end if;

ResultGroup := MakeUnique(convert(map(convert,

map(proc (item) options operator, arrow,

map(proc (number) options operator, arrow,

frac(8 + number) end proc, item) end proc, Big Group),list),list));

gc( );
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return ResultGroup, MinimalGenSet(ResultGroup)

end proc:

Preliminary := proc (W::polynorn, Vars::list, Cheat::string := "Off")

local SymGpData, q, ReducW;

description "This will check to see if W has

an isolated quasihomogeneous singularity at the origin

with uniquely determined weights for the variables,

and if it is irreducible";

if nops(W) < nops(Vars) or type(W, ‘*‘) and 1 < nops(Vars) then

print("The polynomial does not have

uniquely determined weights for the given list of variables");

return [false]

end if;

if Cheat = "Off" then

if not IsolatedTest(W, Vars) then

print("The polynomial does not have

an isolated singularity at the origin");

return [false]

end if;

else

print("Cheat mode ON -- Beware for Non-Isolated-ness!");

end if;

SymGpData := SymGroup( W, Vars);

q := SymGpData[1];

if not convert(convert(map(proc (item) options operator, arrow,

0 < item and item < 1 end proc, q), list), ’and’) then

print("The weights do not all lie between 0 and 1.");

return [false]
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end if;

gc( );

ReducW:= Reducibility(W, Vars);

if ReducW[l] then

return [true, op(SymGpData)]

else

return [op(ReducW), op(SymGpData)]

end if

end proc:

> LGModels:= proc (W::polynom, Vars::list, ASectorsGroup::list:= [[ ],1,Vars],

BSectorsGroup::list:= [[ ],1,Vars], AInvarianceGroup::list := [[ ],1,Vars],

BInvarianceGroup::list:= [[ ],1,Vars], Cheat:: string := "Off")

local q, Listq, MaxGGenerators, mu, B, cHat, dim, PrelimData, JacobIdeal,

NearBasis, H, Hess, MaxG, ASectorsG, AInvarianceG, AGenerators,

AFixedLociBases, BSectorsG, BInvarianceG, BGenerators, BFixedLociBases,

CurlyH, OrbifoldB, OrderOfG, OrderOfAInvar, OrderOfASectors, PossibleBGen,

OrderOfJ, BSideMaxGroup, BGenMax, RejectReducible;

description "Computes the orbifold A- and B- models for a given singularity.

It first checks if the polynomial is has an isolated

quasihomogeneous singularity at the origin,

checks if it is irreducible,

and procedes to find the symmetry group,

the charges, and bases for the A-model and B-model rings.";

dim := nops(Vars);

PrelimData := Preliminary(W, Vars, Cheat);

RejectReducible :=

evalb(ASectorsGroup = [[ ], 1, Vars]

and AInvarianceGroup = [[ ], 1, Vars]
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and BSectorsGroup = [[ ], 1, Vars]

and BInvarianceGroup = [[ ], 1, Vars]);

if not PrelimData[1] and 1 < nops(PrelimData) then

print("The given singularity is the tensor product

of the following singularities:",

PrelimData[2 .. -4]);

if RejectReducible then

return NULL

end if;

elif not PrelimData[1] then

print("The given input is not a polynomial with an

isolated quasihomogeneous singularity at the origin");

return NULL

end if;

q := PrelimData[-3];

Listq := convert( q, list);

mu := mul(1 / q[i]-1, i= 1 .. dim);

cHat:= add( 1-2 * q[i], i = 1 .. dim);

JacobIdeal := convert( map(proc (a) options operator, arrow,

diff( W, a) end proc, Vars) , set);

B:= Basis(JacobIdeal, plex(op(Vars)));

H:= LinearAlgebra[Determinant](VectorCalculus[Hessian](W, Vars));

Hess:= NormalForm(H, B, plex(op(Vars)));

NearBasis:= map(proc (item) options operator, arrow,

Exponentiate(item[1], Vars) end proc, TrialElts(Listq, cHat, B, Vars));

if Cheat = "Off" then

MaxG := PrelimData[-2];
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MaxGGenerators := PrelimData[-1];

else MaxG, MaxGGenerators:= MakeGroup( [Listq], 1, Vars) :

print("Cheat mode ON -- declaring G=<J>");

end if;

OrderOfG := nops(MaxG);

OrderOfJ:= ilcm(op(convert(map(denom, q), list)));

print( "Generating Set for Maximal Abelian Symmetry Group:",

MaxGGenerators) ;

PossibleBGen :=

convert(MinimalGenSet(select(proc (item) options operator,arrow,

evalb(frac(add(k, ‘in‘(k, item))) = 0) end proc, MaxG)),list);

print("Possible B-side generators: ", convert(PossibleBGen, set));

BSideMaxGroup, BGenMax:= MakeGroup(PossibleBGen, W, Vars);

if ASectorsGroup[ 1] = [ ] then

ASectorsG := MaxG

else

ASectorsG := select(proc (item) options operator, arrow,

member(item, MaxG) end proc,

MakeGroup([

op(ASectorsGroup[1]), Listq], ASectorsGroup[2], ASectorsGroup[3])[1])

end if;

if AInvarianceGroup[1] = [ ] then

AInvarianceG := ASectorsG;

AGenerators := MinimalGenSet(ASectorsG)

else

AInvarianceG, AGenerators := MakeGroup(op(AInvarianceGroup))

end if;

if not member(Listq, AInvarianceG) then
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AInvarianceG := select(proc (item) options operator, arrow,

member( item, MaxG) end proc,

MakeGroup([op(AInvarianceGroup[1]), Listq],

AInvarianceGroup[2], AInvarianceGroup[3])[1]);

AGenerators := MinimalGenSet(AInvarianceG);

print("Invalid input for A-invariance group;

replacing by the join of <J> and the given group’s intersection

with the maximal abelian group:", AGenerators)

end if;

if BSectorsGroup[1] = [ ] then

BSectorsG:= [[seq(0, i = 1 .. nops( Vars))]]

else

if Cheat = "BSide" then

BSectorsG:= MakeGroup(op(BSectorsGroup))[1];

else

BSectorsG := select(proc (item) options operator, arrow,

member(item, BSideMaxGroup) end proc, MakeGroup(op(BSectorsGroup))[1])

end if;

end if;

if BInvarianceGroup[1] = [ ] then

BInvarianceG := BSectorsG

else

if Cheat = "BSide" then

BInvarianceG := MakeGroup(op(BInvarianceGroup))[1];

else

BInvarianceG := select(proc (item) options operator, arrow,

member(item, BSideMaxGroup) end proc, MakeGroup(op(BInvarianceGroup))[1])

end if;
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end if;

BGenerators := MinimalGenSet(BInvarianceG);

AFixedLociBases := map(TempWBasis, ASectorsG, W, NearBasis, q, Vars);

BFixedLociBases := map(TempWBasis, BSectorsG, W, NearBasis, q, Vars);

print("Charges= ", Listq);

print("cHat= ", cHat, "mu= ", mul(1 / q-1, q in Listq));

print( "Index of G over J = ", OrderOfG / OrderOfJ);

CurlyH := map(proc (item) options operator, arrow,

[2 * iota(item[1], Listq), op(item)] end proc,

map(GroupInvariantsA, AFixedLociBases, AGenerators, Vars));

OrbifoldB := map(proc (item) options operator, arrow,

[max(0, ListTools[DotProduct](DegRead(item[2], Vars), Listq))

+ (1/2) * sPlus(item [1], Listq), op(item)] end proc,

map(GroupInvariantsA, BFixedLociBases, BGenerators, Vars));

printf( "h = \%a \t", nops(CurlyH)); printf( "m = \%a \t", nops(OrbifoldB));

CurlyH := sort(CurlyH, proc (a, b) options operator, arrow,

evalb(a[1] < b[1] or a[1] = b[1] and degree(a[3]) < degree(b[3])) end proc);

OrbifoldB := sort(OrbifoldB, proc (a, b) options operator, arrow,

evalb(a[1] < b[1] or a[1] = b[1] and degree(a[3]) < degree(b[3])) end proc);

gc( );

return [Listq, CurlyH, OrbifoldB]

end proc:

> SymGroup := proc(w:: polynom, Vars:: list)

local dim, RowDim, BMatrix, StdBasis, PossGenerators, SubMatrices,

AllOnes, Charges, GoodGenerators, PosGen2, FracVec, GpInProg,

TempSubgp, GeneratorsLeft, UsedGen;

dim := nops(Vars);
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BMatrix := GetMatrix(W, Vars);

RowDim:= RowDimension(BMatrix);

FracVec := Vector(dim, fill = 1);

AllOnes := Vector(RowDim, fill = 1);

StdBasis:= [seq(Vector(dim, shape = scalar[k, 1]), k = 1 .. dim) ];

SubMatrices := select(item -> evalb(Rank(item) = dim),

[seq(BMatrix[k], k in choose(RowDim, dim))]);

# Here we take all full-rank submatrices of B

if nops(SubMatrices) = 0 then

print("Input polynomial does not have

uniquely determined weights for quasihomgeneity");

return [false];

end if;

Charges := LinearSolve(BMatrix, AllOnes);

PossGenerators :=

convert(Flatten([seq(map(LinearSolve, SubMatrices, k),

k in StdBasis)]), set);

PosGen2:= map(object-convert(object, Vector),

map(vect->map(frac, vect),

map(item->convert(item + RowDimPracVec, list), PossGenerators)));

# We take all distinct generator candidates

# We tapdance by going to lists and back

# because Maple is stupid about recognizing vectors

# as being the same when in a list or set.

PosGen2 := PosGen2 union {Charges};

# This is too brutish: there should be a decent way to do this without
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# forcing <J>. This could induce errors of life if there are polynomials

# weird enough.

GoodGenerators := select(object->

andmap( entry-> type(entry, integer), BMatrix.object), PosGen2);

# we keep only the generator candidates

# that satisfy all monomials as group relators

GoodGenerators :=

convert(map(item -> convert(item, list), GoodGenerators), list);

GoodGenerators := sort(GoodGenerators, (a, b) ->

evalb(ilcm(op(map(denom, a))) > ilcm(op(map(denom, b)))));

# now we sort the possible generators by order as group elements

GeneratorsLeft:= GoodGenerators;

GplnProg := {[seq(0, k = 1..dim)]};

UsedGen := [ ];

while nops( GeneratorsLeft) > 0 do

TempSubgp := {seq( map( frac, k*GeneratorsLeft[1]),

k = 1 .. ilcm (op(convert(map(denom, GeneratorsLeft[1]), list))))};

# make cyclic group for next unused generator

UsedGen := [op(UsedGen) , GeneratorsLeft[1]];

# add this new generator to the list of generators we’ve used

GpInProg:= {seq(seq(map(frac, i + j), i in TempSubgp), j in GpInProg)};

GeneratorsLeft:= remove(item-> member(item, GpInProg), GeneratorsLeft);

# remove anything that would be redundant (rom the list of unused generators

end do;

return [Charges, convert( GplnProg, list), UsedGen]:

end proc:
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